Show simple item record

Předvídatelnost středoevropských akciových výnosů: Překonají Neuronové sítě moderní ekonomické analýzy?
dc.contributor.advisorŽikeš, Filip
dc.creatorBaruník, Jozef
dc.date.accessioned2021-12-08T13:16:20Z
dc.date.available2021-12-08T13:16:20Z
dc.date.issued2006
dc.identifier.urihttp://hdl.handle.net/20.500.11956/170509
dc.description.abstractV této práci jsou aplikovány neuronové sítě jako neparametrická, nelineární metoda modelování na středoevropské trhy (Český, Polský, Maďarský a Německý). V prvních dvou kapitolách je definováno prognózování v kontextu klasické ekonometrické analýzy ve spojení s neuronovými sítěmi. Dále jsou prezentovány optimalizační metody použité při testování - konjugovaný gradient, Levenberg- Marquardt a genetické algoritmy, a nakonec statistické metody pro srovnání přesnosti předpovědí různých modelů a jejich ekonomickou signifikaci. V empirickém modelování je nejdřív ukázána výkonnost neuronové sítě na chaotické časové řadě Mackey-Glass. Dále následuje analýza reálných denních a týdenních časových řad středoevropských indexů pro období let 2000 až 2006, kde je ukázáno, že Neuronové sítě predikují denní výnosy DAX a týdenní výnosy PX50, BUX se signifikantně nižší chybou pomocí časových řad historických výnosů než ostatní ekonometrické metody. Podobných výsledků bylo dosaženo při predikci národního výnosu pomocí zpožděných výnosů alespoň jednoho z ostatních indexů. Dále je taky ukázáno, že s Neuronovou sítí byla dosažena ekonomická signifikace predikce denních i týdenních výnosů PX-50, BUX i DAX. Přesnost předpovědí testovaných řad se pohybuje kolem 60%, co považujeme za dobrý výsledek. V poslední kapitole je...cs_CZ
dc.description.abstractIn this thesis we apply neural networks as nonparametric and nonlinear methods to the Central European stock markets returns (Czech, Polish, Hungarian and German) modelling. In the first two chapters we define prediction task and link the classical econometric analysis to neural networks. We also present optimization methods which will be used in the tests, conjugate gradient, Levenberg-Marquardt, and evolutionary search method. Further on, we present statistical methods for comparing the predictive accuracy of the non-nested models, as well as economic significance measures. In the empirical tests we first show the power of neural networks on Mackey-Glass chaotic time series followed by real-world data of the daily and weekly returns of mentioned stock exchanges for the 2000:2006 period. We find neural networks to have significantly lower prediction error than classical models for daily DAX series, weekly PX50 and BUX series. The lags of time-series were used, and also cross-country predictability has been tested, but the results were not significantly different. We also achieved economic significance of predictions with both daily and weekly PX-50, BUX and DAX with 60% accuracy of prediction. Finally we use neural network to learn Black-Scholes model and compared the pricing errors of...en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Fakulta sociálních vědcs_CZ
dc.subjectvýnosy akcií a jejich predikce pomocí neuronové sítěcs_CZ
dc.subjectoptimalizační algoritmycs_CZ
dc.subjectoceňování derivátů pomocí neuronové sítěcs_CZ
dc.subjectemerging stock marketsen_US
dc.subjectpredictability of stock returnsen_US
dc.subjectneural networksen_US
dc.subjectoptimization algorithmsen_US
dc.subjectderivative pricing using neural networksen_US
dc.titleOn the predictibility of Central European stock returns: Do Neural Networks outperform modern economic techniques?en_US
dc.typediplomová prácecs_CZ
dcterms.created2006
dcterms.dateAccepted2006-09-05
dc.description.departmentInstitut ekonomických studiícs_CZ
dc.description.departmentInstitute of Economic Studiesen_US
dc.description.facultyFaculty of Social Sciencesen_US
dc.description.facultyFakulta sociálních vědcs_CZ
dc.identifier.repId2300
dc.title.translatedPředvídatelnost středoevropských akciových výnosů: Překonají Neuronové sítě moderní ekonomické analýzy?cs_CZ
dc.contributor.refereeVošvrda, Miloslav
dc.identifier.aleph000978411
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineEconomicsen_US
thesis.degree.disciplineEkonomiecs_CZ
thesis.degree.programEconomicsen_US
thesis.degree.programEkonomické teoriecs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csFakulta sociálních věd::Institut ekonomických studiícs_CZ
uk.taxonomy.organization-enFaculty of Social Sciences::Institute of Economic Studiesen_US
uk.faculty-name.csFakulta sociálních vědcs_CZ
uk.faculty-name.enFaculty of Social Sciencesen_US
uk.faculty-abbr.csFSVcs_CZ
uk.degree-discipline.csEkonomiecs_CZ
uk.degree-discipline.enEconomicsen_US
uk.degree-program.csEkonomické teoriecs_CZ
uk.degree-program.enEconomicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csV této práci jsou aplikovány neuronové sítě jako neparametrická, nelineární metoda modelování na středoevropské trhy (Český, Polský, Maďarský a Německý). V prvních dvou kapitolách je definováno prognózování v kontextu klasické ekonometrické analýzy ve spojení s neuronovými sítěmi. Dále jsou prezentovány optimalizační metody použité při testování - konjugovaný gradient, Levenberg- Marquardt a genetické algoritmy, a nakonec statistické metody pro srovnání přesnosti předpovědí různých modelů a jejich ekonomickou signifikaci. V empirickém modelování je nejdřív ukázána výkonnost neuronové sítě na chaotické časové řadě Mackey-Glass. Dále následuje analýza reálných denních a týdenních časových řad středoevropských indexů pro období let 2000 až 2006, kde je ukázáno, že Neuronové sítě predikují denní výnosy DAX a týdenní výnosy PX50, BUX se signifikantně nižší chybou pomocí časových řad historických výnosů než ostatní ekonometrické metody. Podobných výsledků bylo dosaženo při predikci národního výnosu pomocí zpožděných výnosů alespoň jednoho z ostatních indexů. Dále je taky ukázáno, že s Neuronovou sítí byla dosažena ekonomická signifikace predikce denních i týdenních výnosů PX-50, BUX i DAX. Přesnost předpovědí testovaných řad se pohybuje kolem 60%, co považujeme za dobrý výsledek. V poslední kapitole je...cs_CZ
uk.abstract.enIn this thesis we apply neural networks as nonparametric and nonlinear methods to the Central European stock markets returns (Czech, Polish, Hungarian and German) modelling. In the first two chapters we define prediction task and link the classical econometric analysis to neural networks. We also present optimization methods which will be used in the tests, conjugate gradient, Levenberg-Marquardt, and evolutionary search method. Further on, we present statistical methods for comparing the predictive accuracy of the non-nested models, as well as economic significance measures. In the empirical tests we first show the power of neural networks on Mackey-Glass chaotic time series followed by real-world data of the daily and weekly returns of mentioned stock exchanges for the 2000:2006 period. We find neural networks to have significantly lower prediction error than classical models for daily DAX series, weekly PX50 and BUX series. The lags of time-series were used, and also cross-country predictability has been tested, but the results were not significantly different. We also achieved economic significance of predictions with both daily and weekly PX-50, BUX and DAX with 60% accuracy of prediction. Finally we use neural network to learn Black-Scholes model and compared the pricing errors of...en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Fakulta sociálních věd, Institut ekonomických studiícs_CZ
thesis.grade.code1
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO
dc.identifier.lisID990009784110106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV