Integrální reprezentace v nekompaktním případě
Integral representation theorems in noncompact cases
diplomová práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/13282Identifikátory
SIS: 44634
Kolekce
- Kvalifikační práce [11217]
Autor
Vedoucí práce
Oponent práce
Malý, Jan
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Matematická analýza
Katedra / ústav / klinika
Katedra matematické analýzy
Datum obhajoby
13. 9. 2007
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Výborně
Classical Choquet's theory deals with compact convex subsets of locally convex spaces. This thesis discuss some aspects of generalization of Choquet's theory for a broader class of sets, for example those which are assumed to be only closed and bounded instead of compact. Because Radon measures are usually defined for locally compact topological spaces, and this is not the case of the closed unit ball in a Banach space of infinite dimension, there are used the so called Baire measures in this setting. This thesis particularly deals with the question of existence of resultants of these measures, with the properties of the resultant map, with the analogy of Bauer's characterization of extreme points and with some other concepts known from compact theory. By using some examples we show that many of these theorems doesn't hold in noncompact setting. We also mention forms of these theorems which can be proved.