Show simple item record

Generalized Stable Models in Finance
dc.contributor.advisorKlebanov, Lev
dc.creatorChovanec, Róbert
dc.date.accessioned2017-04-06T11:36:16Z
dc.date.available2017-04-06T11:36:16Z
dc.date.issued2007
dc.identifier.urihttp://hdl.handle.net/20.500.11956/13275
dc.description.abstractIn this contribution, a basic theoretical approach to stable laws is described. There are mentioned some definitions of the stable distributions, properties and behavior of stable distributed random variables. Next, conditional modeling under the stable laws are analyzed. One can find homoskedastic (ARMA) and heteroskedastic (GARCH) structures. The GARCH models are explained partly for the Gaussian case too. An empirical application of this paper is based on comparison between the models, established in theoretical part, under the normal, and stable distribution respectively, built on real data from energetics. One issues from unconditional, then continues with conditional ARMA and finally, there are mixed ARMA-GARCH models. The results of interpreted statistical analysis demonstrate that the models based on the stable distribution matched the empirical distribution better than the the models based on the Gaussian distribution.en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleZobecněný stabilní model ve financíchcs_CZ
dc.typediplomová prácecs_CZ
dcterms.created2007
dcterms.dateAccepted2007-09-17
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId42808
dc.title.translatedGeneralized Stable Models in Financeen_US
dc.contributor.refereeŠtěpán, Josef
dc.identifier.aleph000939654
thesis.degree.nameMgr.
thesis.degree.levelmagisterskécs_CZ
thesis.degree.disciplinePravděpodobnost, matematická statistika a ekonometriecs_CZ
thesis.degree.disciplineProbability, mathematical statistics and econometricsen_US
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csPravděpodobnost, matematická statistika a ekonometriecs_CZ
uk.degree-discipline.enProbability, mathematical statistics and econometricsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.enIn this contribution, a basic theoretical approach to stable laws is described. There are mentioned some definitions of the stable distributions, properties and behavior of stable distributed random variables. Next, conditional modeling under the stable laws are analyzed. One can find homoskedastic (ARMA) and heteroskedastic (GARCH) structures. The GARCH models are explained partly for the Gaussian case too. An empirical application of this paper is based on comparison between the models, established in theoretical part, under the normal, and stable distribution respectively, built on real data from energetics. One issues from unconditional, then continues with conditional ARMA and finally, there are mixed ARMA-GARCH models. The results of interpreted statistical analysis demonstrate that the models based on the stable distribution matched the empirical distribution better than the the models based on the Gaussian distribution.en_US
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ
dc.identifier.lisID990009396540106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV