Regularization methods for discrete inverse problems in single particle analysis
Regularizační metody pro řešení diskrétních inverzních problémů v single particle analýze
rigorous thesis (RECOGNIZED)

View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/128264Identifiers
Study Information System: 236748
Collections
- Kvalifikační práce [11322]
Author
Advisor
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
Numerical and computational mathematics
Department
Department of Numerical Mathematics
Date of defense
23. 6. 2021
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
English
Grade
Recognized
Keywords (Czech)
kryo-elektronová mikroskopie, single particle analýza, rekonstrukce obrazu, šum, regularizaceKeywords (English)
cryo-electron microscopy, single particle analysis, image reconstruction, noise, regularizationCílem této práce je zkoumat možnosti aplikace regularizačních metod založených na Krylovovských podprostorech na diskrétní inverzní úlohy vznikající v single particle analýze (SPA). V první části práce je formulován spo- jitý model a je vysvětlena jeho diskretizace. Výsledkem je špatně podmíněný inverzní problém Ax ≈ b, kde A je lineární operátor a b representuje naměřená data zatížená šumem. V práci jsou zahrnuty teoretické základy a přehled vy- braných metod pro řešení obecných lineárních inverzních problémů. Dále se práce zaměřuje na specifické vlastnosti inverzních problémů ve SPA a zahrnuje experimentální analýzu založenou na synteticky vygenerovaných SPA datech (experimenty jsou provedeny v prostředí Matlab). V další části se práce zaměřuje na metodu založenou na iterativním hybridním LSQR s vnitřní Tikhonovskou regularizací. Diskutovány jsou též vhodné zastavovací kritérium a metoda pro volbu regularizačního parametru pro vnitřní regularizaci. Na základě vlastní implementace (v prostředí Matlab a v C++) jsou výsledky navržené metody analyzovány na sérii modelových SPA dat, kde se uvažuje zatížení vysokou hla- dinou šumu a realistické rozložení projekčních úhlů. Metoda je dále...
The aim of this thesis is to investigate applicability of regulariza- tion by Krylov subspace methods to discrete inverse problems arising in single particle analysis (SPA). We start with a smooth model formulation and describe its discretization, yielding an ill-posed inverse problem Ax ≈ b, where A is a lin- ear operator and b represents the measured noisy data. We provide theoretical background and overview of selected methods for the solution of general linear inverse problems. Then we focus on specific properties of inverse problems from SPA, and provide experimental analysis based on synthetically generated SPA datasets (experiments are performed in the Matlab enviroment). Turning to the solution of our inverse problem, we investigate in particular an approach based on iterative Hybrid LSQR with inner Tikhonov regularization. A reliable stopping criterion for the iterative part as well as parameter-choice method for the inner regularization are discussed. Providing a complete implementation of the proposed solver (in Matlab and in C++), its performance is evaluated on various SPA model datasets, considering high levels of noise and realistic distri- bution of orientations of scanning angles. Comparison to other regularization methods, including the ART method traditionally used in SPA,...