Show simple item record

Regularizační metody pro řešení diskrétních inverzních problémů v single particle analýze
dc.contributor.advisorHnětynková, Iveta
dc.creatorHavelková, Eva
dc.date.accessioned2021-08-03T09:25:20Z
dc.date.available2021-08-03T09:25:20Z
dc.date.issued2021
dc.identifier.urihttp://hdl.handle.net/20.500.11956/128264
dc.description.abstractCílem této práce je zkoumat možnosti aplikace regularizačních metod založených na Krylovovských podprostorech na diskrétní inverzní úlohy vznikající v single particle analýze (SPA). V první části práce je formulován spo- jitý model a je vysvětlena jeho diskretizace. Výsledkem je špatně podmíněný inverzní problém Ax ≈ b, kde A je lineární operátor a b representuje naměřená data zatížená šumem. V práci jsou zahrnuty teoretické základy a přehled vy- braných metod pro řešení obecných lineárních inverzních problémů. Dále se práce zaměřuje na specifické vlastnosti inverzních problémů ve SPA a zahrnuje experimentální analýzu založenou na synteticky vygenerovaných SPA datech (experimenty jsou provedeny v prostředí Matlab). V další části se práce zaměřuje na metodu založenou na iterativním hybridním LSQR s vnitřní Tikhonovskou regularizací. Diskutovány jsou též vhodné zastavovací kritérium a metoda pro volbu regularizačního parametru pro vnitřní regularizaci. Na základě vlastní implementace (v prostředí Matlab a v C++) jsou výsledky navržené metody analyzovány na sérii modelových SPA dat, kde se uvažuje zatížení vysokou hla- dinou šumu a realistické rozložení projekčních úhlů. Metoda je dále...cs_CZ
dc.description.abstractThe aim of this thesis is to investigate applicability of regulariza- tion by Krylov subspace methods to discrete inverse problems arising in single particle analysis (SPA). We start with a smooth model formulation and describe its discretization, yielding an ill-posed inverse problem Ax ≈ b, where A is a lin- ear operator and b represents the measured noisy data. We provide theoretical background and overview of selected methods for the solution of general linear inverse problems. Then we focus on specific properties of inverse problems from SPA, and provide experimental analysis based on synthetically generated SPA datasets (experiments are performed in the Matlab enviroment). Turning to the solution of our inverse problem, we investigate in particular an approach based on iterative Hybrid LSQR with inner Tikhonov regularization. A reliable stopping criterion for the iterative part as well as parameter-choice method for the inner regularization are discussed. Providing a complete implementation of the proposed solver (in Matlab and in C++), its performance is evaluated on various SPA model datasets, considering high levels of noise and realistic distri- bution of orientations of scanning angles. Comparison to other regularization methods, including the ART method traditionally used in SPA,...en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectkryo-elektronová mikroskopiecs_CZ
dc.subjectsingle particle analýzacs_CZ
dc.subjectrekonstrukce obrazucs_CZ
dc.subjectšumcs_CZ
dc.subjectregularizacecs_CZ
dc.subjectcryo-electron microscopyen_US
dc.subjectsingle particle analysisen_US
dc.subjectimage reconstructionen_US
dc.subjectnoiseen_US
dc.subjectregularizationen_US
dc.titleRegularization methods for discrete inverse problems in single particle analysisen_US
dc.typerigorózní prácecs_CZ
dcterms.created2021
dcterms.dateAccepted2021-06-23
dc.description.departmentDepartment of Numerical Mathematicsen_US
dc.description.departmentKatedra numerické matematikycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId236748
dc.title.translatedRegularizační metody pro řešení diskrétních inverzních problémů v single particle analýzecs_CZ
thesis.degree.nameRNDr.
thesis.degree.levelrigorózní řízenícs_CZ
thesis.degree.disciplineNumerická a výpočtová matematikacs_CZ
thesis.degree.disciplineNumerical and computational mathematicsen_US
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typerigorózní prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra numerické matematikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Numerical Mathematicsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csNumerická a výpočtová matematikacs_CZ
uk.degree-discipline.enNumerical and computational mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csUznánocs_CZ
thesis.grade.enRecognizeden_US
uk.abstract.csCílem této práce je zkoumat možnosti aplikace regularizačních metod založených na Krylovovských podprostorech na diskrétní inverzní úlohy vznikající v single particle analýze (SPA). V první části práce je formulován spo- jitý model a je vysvětlena jeho diskretizace. Výsledkem je špatně podmíněný inverzní problém Ax ≈ b, kde A je lineární operátor a b representuje naměřená data zatížená šumem. V práci jsou zahrnuty teoretické základy a přehled vy- braných metod pro řešení obecných lineárních inverzních problémů. Dále se práce zaměřuje na specifické vlastnosti inverzních problémů ve SPA a zahrnuje experimentální analýzu založenou na synteticky vygenerovaných SPA datech (experimenty jsou provedeny v prostředí Matlab). V další části se práce zaměřuje na metodu založenou na iterativním hybridním LSQR s vnitřní Tikhonovskou regularizací. Diskutovány jsou též vhodné zastavovací kritérium a metoda pro volbu regularizačního parametru pro vnitřní regularizaci. Na základě vlastní implementace (v prostředí Matlab a v C++) jsou výsledky navržené metody analyzovány na sérii modelových SPA dat, kde se uvažuje zatížení vysokou hla- dinou šumu a realistické rozložení projekčních úhlů. Metoda je dále...cs_CZ
uk.abstract.enThe aim of this thesis is to investigate applicability of regulariza- tion by Krylov subspace methods to discrete inverse problems arising in single particle analysis (SPA). We start with a smooth model formulation and describe its discretization, yielding an ill-posed inverse problem Ax ≈ b, where A is a lin- ear operator and b represents the measured noisy data. We provide theoretical background and overview of selected methods for the solution of general linear inverse problems. Then we focus on specific properties of inverse problems from SPA, and provide experimental analysis based on synthetically generated SPA datasets (experiments are performed in the Matlab enviroment). Turning to the solution of our inverse problem, we investigate in particular an approach based on iterative Hybrid LSQR with inner Tikhonov regularization. A reliable stopping criterion for the iterative part as well as parameter-choice method for the inner regularization are discussed. Providing a complete implementation of the proposed solver (in Matlab and in C++), its performance is evaluated on various SPA model datasets, considering high levels of noise and realistic distri- bution of orientations of scanning angles. Comparison to other regularization methods, including the ART method traditionally used in SPA,...en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra numerické matematikycs_CZ
thesis.grade.codeU
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusU


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV