Show simple item record

Součty čtverců v číselných tělesech
dc.contributor.advisorKala, Vítězslav
dc.creatorRaška, Martin
dc.date.accessioned2021-08-03T09:23:42Z
dc.date.available2021-08-03T09:23:42Z
dc.date.issued2021
dc.identifier.urihttp://hdl.handle.net/20.500.11956/128256
dc.description.abstractCílem práce je studovat totálně reálná kvadratická tělesa Q( √ D), ve kterých pro pevné přirozené číslo m platí, že všechny m-násobky totálně kladných celistvých prvků lze vyjádřit ve tvaru součtu čtverců. Dokazujeme poměrně silné nutné a postačující podmínky k tomu, aby uvažovaná tělesa měla tuto vlastnost. Dále uvádíme rychlý algoritmus, který pro pevné m najde všechna tělesa, ve kterých výše uvedená skutečnost nastává. 1cs_CZ
dc.description.abstractThe goal of this thesis is to study real quadratic number fields Q( √ D) such that, for a given rational integer m, all m-multiples of totally positive integers are sums of squares. We prove quite sharp necessary and sufficient conditions for this to happen. Further, we give a fast algorithm that verifies this property for specific m, D and that for a fixed m finds all such fields in polynomial time. 1en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectkvadratická tělesa|součet čtverců|nerozložitelné prvkycs_CZ
dc.subjectquadratic fields|sum of squares|indecomposablesen_US
dc.titleSums of squares in number fieldsen_US
dc.typebakalářská prácecs_CZ
dcterms.created2021
dcterms.dateAccepted2021-07-08
dc.description.departmentDepartment of Algebraen_US
dc.description.departmentKatedra algebrycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId230647
dc.title.translatedSoučty čtverců v číselných tělesechcs_CZ
dc.contributor.refereeYatsyna, Pavlo
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineObecná matematikacs_CZ
thesis.degree.disciplineGeneral Mathematicsen_US
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra algebrycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Algebraen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csObecná matematikacs_CZ
uk.degree-discipline.enGeneral Mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csCílem práce je studovat totálně reálná kvadratická tělesa Q( √ D), ve kterých pro pevné přirozené číslo m platí, že všechny m-násobky totálně kladných celistvých prvků lze vyjádřit ve tvaru součtu čtverců. Dokazujeme poměrně silné nutné a postačující podmínky k tomu, aby uvažovaná tělesa měla tuto vlastnost. Dále uvádíme rychlý algoritmus, který pro pevné m najde všechna tělesa, ve kterých výše uvedená skutečnost nastává. 1cs_CZ
uk.abstract.enThe goal of this thesis is to study real quadratic number fields Q( √ D) such that, for a given rational integer m, all m-multiples of totally positive integers are sums of squares. We prove quite sharp necessary and sufficient conditions for this to happen. Further, we give a fast algorithm that verifies this property for specific m, D and that for a fixed m finds all such fields in polynomial time. 1en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra algebrycs_CZ
thesis.grade.code1
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV