dc.contributor.advisor | Kala, Vítězslav | |
dc.creator | Šíma, Lucien | |
dc.date.accessioned | 2021-07-14T06:56:51Z | |
dc.date.available | 2021-07-14T06:56:51Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/127506 | |
dc.description.abstract | Tato práce se zabývá polookruhy. Polookruhy jsou tvořeny nosnou množinou s dvěma binárními operacemi, které jsou komutativní, asociativní a navíc je jedna z nich distributivní vůči druhé. Zaměříme se na třídu ideálově-jednoduchých polookruhů, tedy polookruhů bez vlastních ideálů. Předložíme klasifikaci ideálově-jednoduchých polookruhů a zabýváme se jejich podtřídami, mezi něž patří polotělesa a parapolotělesa. Hlavním výsledkem této práce jsou těsné odhady minimálního počtu polookruhových generátorů parapolotěles. Dále se věnujeme studiu konečně generovaných polotěles a ukážeme, jak mohou vypadat. V neposlední řadě ukážeme, že každý konečně generovaný ideálově jednoduchý polookruh je také konečně generovaný jako multiplikativní grupa. | cs_CZ |
dc.description.abstract | We investigate commutative semirings, which are formed by a ground set equipped with two binary associative and commutative operations such that one distributes over the other. We narrow down our interest to ideal-simple semirings, that is, semirings without proper ideals. We present the classification of ideal-simple semirings and deal with some classes of ideal-simple semirings, namely semifields and parasemifields. The main result of this thesis is giving tight bounds on the minimal number of generators needed to generate a parasemifield as a semiring. We also study how the semifields that are finitely generated as a semiring look like. Last, but not least, we show that every finitely generated ideal-simple semiring is finitely-generated as a multiplicative semigroup. | en_US |
dc.language | Čeština | cs_CZ |
dc.language.iso | cs_CZ | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | ideal-simple semirings|finitely generated semirings|parasemifields|semifields | cs_CZ |
dc.subject | ideálově-jednoduché polookruhy|konečně generované polookruhy|parapolotělesa|polotělesa | en_US |
dc.title | Konečně generované polookruhy a polotělesa | cs_CZ |
dc.type | diplomová práce | cs_CZ |
dcterms.created | 2021 | |
dcterms.dateAccepted | 2021-06-23 | |
dc.description.department | Department of Algebra | en_US |
dc.description.department | Katedra algebry | cs_CZ |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.identifier.repId | 230749 | |
dc.title.translated | Finitely generated semirings and semifields | en_US |
dc.contributor.referee | Korbelář, Miroslav | |
thesis.degree.name | Mgr. | |
thesis.degree.level | navazující magisterské | cs_CZ |
thesis.degree.discipline | Mathematical structures | en_US |
thesis.degree.discipline | Matematické struktury | cs_CZ |
thesis.degree.program | Matematika | cs_CZ |
thesis.degree.program | Mathematics | en_US |
uk.thesis.type | diplomová práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra algebry | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Algebra | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Matematické struktury | cs_CZ |
uk.degree-discipline.en | Mathematical structures | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | Tato práce se zabývá polookruhy. Polookruhy jsou tvořeny nosnou množinou s dvěma binárními operacemi, které jsou komutativní, asociativní a navíc je jedna z nich distributivní vůči druhé. Zaměříme se na třídu ideálově-jednoduchých polookruhů, tedy polookruhů bez vlastních ideálů. Předložíme klasifikaci ideálově-jednoduchých polookruhů a zabýváme se jejich podtřídami, mezi něž patří polotělesa a parapolotělesa. Hlavním výsledkem této práce jsou těsné odhady minimálního počtu polookruhových generátorů parapolotěles. Dále se věnujeme studiu konečně generovaných polotěles a ukážeme, jak mohou vypadat. V neposlední řadě ukážeme, že každý konečně generovaný ideálově jednoduchý polookruh je také konečně generovaný jako multiplikativní grupa. | cs_CZ |
uk.abstract.en | We investigate commutative semirings, which are formed by a ground set equipped with two binary associative and commutative operations such that one distributes over the other. We narrow down our interest to ideal-simple semirings, that is, semirings without proper ideals. We present the classification of ideal-simple semirings and deal with some classes of ideal-simple semirings, namely semifields and parasemifields. The main result of this thesis is giving tight bounds on the minimal number of generators needed to generate a parasemifield as a semiring. We also study how the semifields that are finitely generated as a semiring look like. Last, but not least, we show that every finitely generated ideal-simple semiring is finitely-generated as a multiplicative semigroup. | en_US |
uk.file-availability | V | |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra algebry | cs_CZ |
thesis.grade.code | 1 | |
uk.publication-place | Praha | cs_CZ |
uk.thesis.defenceStatus | O | |