Vícekriteriální metody dělení grafů
Multicriteria graph partitioning
bakalářská práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/121232Identifikátory
SIS: 167766
Kolekce
- Kvalifikační práce [11978]
Autor
Vedoucí práce
Oponent práce
Hnětynková, Iveta
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná matematika
Katedra / ústav / klinika
Katedra numerické matematiky
Datum obhajoby
16. 9. 2020
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Výborně
Klíčová slova (česky)
paralelní výpočty, dělení grafů, řešení soustav rovnic, metoda konjugovaných gradientů, řídké maticeKlíčová slova (anglicky)
parallel computations, graph partitioning, solving linear systems, Conjugate Gradient method, sparse matricesPráce se zabývá dělením grafů a aplikací dělení grafů v paralelních algoritmech pro řešení velkých soustav lineárních rovnic s řídkou maticí. Problém dělení grafů je důkladně vyložen a jsou zde popsány standardní metody dělení grafů. Aplikační část se zaměřuje především na předpodmíněnou metodu sdružených gradientů. Jako předpodmínění se používá varianta neúplné Choleského faktorizace založená na odvrhovacím parametru. V práci je vysvětlena role dělení grafů v paralelní variantě této metody a zabývám se v ní vyvažováním zátěže na jednotlivých procesorech. 1
The thesis is about graph partitioning and applications of graph partitioning in paral- lel algorithms for solving big sparse linear equations. The problem of graph partitioning is thorougly described and standard graph partitioning algorithms are explained. The appli- cation part is focusing on the Conjugate Gradient method preconditioned by a variant of incomplete Cholesky factorization based on drop tolerance. The role of graph partitioning in the problem decomposition is described and a load balancing problem is studied. 1
