dc.contributor.advisor | Jelínek, Vít | |
dc.creator | Chmel, Petr | |
dc.date.accessioned | 2020-07-28T09:53:58Z | |
dc.date.available | 2020-07-28T09:53:58Z | |
dc.date.issued | 2020 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/119401 | |
dc.description.abstract | As some problems are (NP-)hard to solve in the general case, a possible approach is to try to solve the problem on a restricted class of graphs. In the thesis, we focus on graphs induced by axis-aligned L-shapes, so-called L-graphs, and a similar class of axis- aligned L-shapes and L-shapes, referred to as {L, L}-graphs, with two vertices sharing an edge if and only if their respective curves intersect. We show that recognizing both L- graphs and {L, L}-graphs is NP-complete. The second part of the thesis focuses on other typical decision problems on L-graphs and their relatives: finding the clique number, the independence number or a 3-coloring. | en_US |
dc.description.abstract | Jelikož některé problémy jsou v obecném případě (NP-)těžké, jedním z možných pří- stupů je řešení těchto problémů na omezené třídě grafů. V této práci se zaměřujeme na grafy indukované osově zarovnanými L-tvary, tzv. L-grafy, a podobnou třídu osově zarovnaných L-tvarů a L-tvarů, tzv. {L, L}-grafy, přičemž dva vrcholy jsou spojeny hra- nou, právě když se jejich křivky protínají. Dokazujeme, že rozpoznávání jak L-grafů, tak {L, L}-grafů je NP-úplné. V druhé části práce se zaměřujeme na další obvyklé rozhodovací problémy na L-grafech a příbuzných třídách: nalezení klikovosti, 3-obarvení či nezávislosti grafu. | cs_CZ |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | intersection graph | en_US |
dc.subject | L-graph | en_US |
dc.subject | recognition | en_US |
dc.subject | NP-completeness | en_US |
dc.subject | průnikový graf | cs_CZ |
dc.subject | L-graf | cs_CZ |
dc.subject | rozpoznávání | cs_CZ |
dc.subject | NP-úplnost | cs_CZ |
dc.title | Algorithmic aspects of intersection representations | en_US |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2020 | |
dcterms.dateAccepted | 2020-07-07 | |
dc.description.department | Computer Science Institute of Charles University | en_US |
dc.description.department | Informatický ústav Univerzity Karlovy | cs_CZ |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.identifier.repId | 219662 | |
dc.title.translated | Algoritmické aspekty průnikových reprezentací | cs_CZ |
dc.contributor.referee | Kratochvíl, Jan | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | Obecná informatika | cs_CZ |
thesis.degree.discipline | General Computer Science | en_US |
thesis.degree.program | Computer Science | en_US |
thesis.degree.program | Informatika | cs_CZ |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Informatický ústav Univerzity Karlovy | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Computer Science Institute of Charles University | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Obecná informatika | cs_CZ |
uk.degree-discipline.en | General Computer Science | en_US |
uk.degree-program.cs | Informatika | cs_CZ |
uk.degree-program.en | Computer Science | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | Jelikož některé problémy jsou v obecném případě (NP-)těžké, jedním z možných pří- stupů je řešení těchto problémů na omezené třídě grafů. V této práci se zaměřujeme na grafy indukované osově zarovnanými L-tvary, tzv. L-grafy, a podobnou třídu osově zarovnaných L-tvarů a L-tvarů, tzv. {L, L}-grafy, přičemž dva vrcholy jsou spojeny hra- nou, právě když se jejich křivky protínají. Dokazujeme, že rozpoznávání jak L-grafů, tak {L, L}-grafů je NP-úplné. V druhé části práce se zaměřujeme na další obvyklé rozhodovací problémy na L-grafech a příbuzných třídách: nalezení klikovosti, 3-obarvení či nezávislosti grafu. | cs_CZ |
uk.abstract.en | As some problems are (NP-)hard to solve in the general case, a possible approach is to try to solve the problem on a restricted class of graphs. In the thesis, we focus on graphs induced by axis-aligned L-shapes, so-called L-graphs, and a similar class of axis- aligned L-shapes and L-shapes, referred to as {L, L}-graphs, with two vertices sharing an edge if and only if their respective curves intersect. We show that recognizing both L- graphs and {L, L}-graphs is NP-complete. The second part of the thesis focuses on other typical decision problems on L-graphs and their relatives: finding the clique number, the independence number or a 3-coloring. | en_US |
uk.file-availability | V | |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Informatický ústav Univerzity Karlovy | cs_CZ |
thesis.grade.code | 1 | |
uk.publication-place | Praha | cs_CZ |