Show simple item record

Problém spektra
dc.contributor.advisorKrajíček, Jan
dc.creatorJežil, Ondřej
dc.date.accessioned2020-07-20T09:46:45Z
dc.date.available2020-07-20T09:46:45Z
dc.date.issued2020
dc.identifier.urihttp://hdl.handle.net/20.500.11956/118876
dc.description.abstractWe study spectra of first-order sentences. After providing some interesting examples of spectra we show that the class of spectra is closed under some simple set-theoretic and algebraic operations. We then define a new class of definable operations generalizing the earlier constructions. Our main result is that the class of these operations is, in a suitable technical sense, closed under a form of iteration. This in conjunction with Cobham's characterisation of FP offers a new proof of Fagin's theorem and also of the Jones-Selman characterisation of spectra as NE sets. 1en_US
dc.description.abstractV této práci se věnujeme spektrům sentencí prvního řádu. Nejprve předvedeme kon- strukci několika zajímavých příkladů spekter a poté ukážeme, že je třída všech spekter uzavřena na několik jednoduchých množinových a algebraických operací. Poté definu- jeme novou třídu definovatelných operací, která zobecní předchozí konstrukce. Hlavním výsledkem práce je důkaz toho, že je třída těchto funkcí uzavřena na určitý druh iterace. Toto nám ve spojení s Cobhamovou charakterizací FP nabízí nový důkaz Faginovy věty a také Jonesovy-Selmenovy charakterizace spekter jako NE množin. 1cs_CZ
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectScholz's problemen_US
dc.subjectspectrumen_US
dc.subjectAsser's problemen_US
dc.subjectgeneralized spectrumen_US
dc.subjectCobham's theoremen_US
dc.subjectScholzův problémcs_CZ
dc.subjectspektrumcs_CZ
dc.subjectAsserův problémcs_CZ
dc.subjectzobecněné spektrumcs_CZ
dc.subjectCobhamova větacs_CZ
dc.titleSpectrum problemen_US
dc.typebakalářská prácecs_CZ
dcterms.created2020
dcterms.dateAccepted2020-06-29
dc.description.departmentDepartment of Algebraen_US
dc.description.departmentKatedra algebrycs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId210273
dc.title.translatedProblém spektracs_CZ
dc.contributor.refereeŠaroch, Jan
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineMatematika pro informační technologiecs_CZ
thesis.degree.disciplineMathematics for Information Technologiesen_US
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra algebrycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Algebraen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematika pro informační technologiecs_CZ
uk.degree-discipline.enMathematics for Information Technologiesen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csV této práci se věnujeme spektrům sentencí prvního řádu. Nejprve předvedeme kon- strukci několika zajímavých příkladů spekter a poté ukážeme, že je třída všech spekter uzavřena na několik jednoduchých množinových a algebraických operací. Poté definu- jeme novou třídu definovatelných operací, která zobecní předchozí konstrukce. Hlavním výsledkem práce je důkaz toho, že je třída těchto funkcí uzavřena na určitý druh iterace. Toto nám ve spojení s Cobhamovou charakterizací FP nabízí nový důkaz Faginovy věty a také Jonesovy-Selmenovy charakterizace spekter jako NE množin. 1cs_CZ
uk.abstract.enWe study spectra of first-order sentences. After providing some interesting examples of spectra we show that the class of spectra is closed under some simple set-theoretic and algebraic operations. We then define a new class of definable operations generalizing the earlier constructions. Our main result is that the class of these operations is, in a suitable technical sense, closed under a form of iteration. This in conjunction with Cobham's characterisation of FP offers a new proof of Fagin's theorem and also of the Jones-Selman characterisation of spectra as NE sets. 1en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra algebrycs_CZ
thesis.grade.code1
uk.publication-placePrahacs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV