Show simple item record

Využití syntaktické informace pro identifikaci hodnocených entit
dc.contributor.advisorHajič, Jan
dc.creatorGlončák, Vladan
dc.date.accessioned2019-10-17T12:09:22Z
dc.date.available2019-10-17T12:09:22Z
dc.date.issued2019
dc.identifier.urihttp://hdl.handle.net/20.500.11956/109409
dc.description.abstractIdentifikace hodnocených entit (Opinion Target Extraction, OTE) je zavedená pod-úloha analýzy sentimentu. Zatímco detekce subjektivních výroků a určení jejich polarity (pozitivní, nebo negativní) je samo o sobě užitečné, schopnost identifikovat i tyto "cílové" entity poskytuje mnohem kvalitnější podklady pro rozhodování: majitelka restaurace potřebuje vědět, jestli si hosté stěžují na obsluhu, jídlo, atmosféru, či další aspekty jejího podniku, atp. Ačkoliv tato úloha má stále silnou lexikální složku, je zde i velký potenciál využít obecných syntaktických konstrukcí v evaluativních výrocích: v jedné větě například může být potenciálních cílových entit více, a přiřazení správného cíle k hodnotícímu výroku tak je záležitostí správného rozlišení v syntaktické struktuře věty. Syntaktické vzorce spojené s evlauativními výroky již byly popsány. Tato diplomová práce si klade za cíl zkoumat, jak přítomnost syntaktické informace ovlivňuje na úloze extrakce cílových entit (OTE) chování state-of-the-art modelů strojového učení, jako například rekurentních neuronových sítí. Nepodařilo se nám najít žádné přesvědčivé důkazy, které by nasvědčovaly, že přítomnost syntaktické informace výrazně ovlivňuje chování zvolených modelů.cs_CZ
dc.description.abstractOpinion Target Extraction (OTE) is a well-established subtask of sentiment analysis. While detecting sentiment polarity is useful in itself, the ability to extract the targets of the opinions allows for more thorough decision making. For example, an owner of a restaurant needs to know whether the guests are complaining about the food, or the ambience, or any other aspect of their establishment, etc. Despite the lexical information being crucial for the task, syntactic structures have potential in being used to correctly decide among multiple candidate entities. Rules based on such structures have been used previously for the task. The objective of this thesis is to investigate, whether syntactic information influences the behavior of the state-of-the-art models such as recurrent neural networks for the OTE task. We did not find any substantial evidence to suggest that adding the syntactic information influences the behavior of the models.en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectIdentifikace hodnocených entitcs_CZ
dc.subjectanalýza sentimentucs_CZ
dc.subjectsyntaxcs_CZ
dc.subjectUniversal Dependenciescs_CZ
dc.subjectstrojové učenícs_CZ
dc.subjectOpinion Target Identificationen_US
dc.subjectSentiment Analysisen_US
dc.subjectSyntaxen_US
dc.subjectUniversal Dependenciesen_US
dc.subjectMachine Learningen_US
dc.titleVyužití syntaktické informace pro identifikaci hodnocených entiten_US
dc.typediplomová prácecs_CZ
dcterms.created2019
dcterms.dateAccepted2019-09-09
dc.description.departmentInstitute of Formal and Applied Linguisticsen_US
dc.description.departmentÚstav formální a aplikované lingvistikycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId213860
dc.title.translatedVyužití syntaktické informace pro identifikaci hodnocených entitcs_CZ
dc.contributor.refereeHelcl, Jindřich
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineComputational Linguisticsen_US
thesis.degree.disciplineMatematická lingvistikacs_CZ
thesis.degree.programInformatikacs_CZ
thesis.degree.programComputer Scienceen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematická lingvistikacs_CZ
uk.degree-discipline.enComputational Linguisticsen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enComputer Scienceen_US
thesis.grade.csVelmi dobřecs_CZ
thesis.grade.enVery gooden_US
uk.abstract.csIdentifikace hodnocených entit (Opinion Target Extraction, OTE) je zavedená pod-úloha analýzy sentimentu. Zatímco detekce subjektivních výroků a určení jejich polarity (pozitivní, nebo negativní) je samo o sobě užitečné, schopnost identifikovat i tyto "cílové" entity poskytuje mnohem kvalitnější podklady pro rozhodování: majitelka restaurace potřebuje vědět, jestli si hosté stěžují na obsluhu, jídlo, atmosféru, či další aspekty jejího podniku, atp. Ačkoliv tato úloha má stále silnou lexikální složku, je zde i velký potenciál využít obecných syntaktických konstrukcí v evaluativních výrocích: v jedné větě například může být potenciálních cílových entit více, a přiřazení správného cíle k hodnotícímu výroku tak je záležitostí správného rozlišení v syntaktické struktuře věty. Syntaktické vzorce spojené s evlauativními výroky již byly popsány. Tato diplomová práce si klade za cíl zkoumat, jak přítomnost syntaktické informace ovlivňuje na úloze extrakce cílových entit (OTE) chování state-of-the-art modelů strojového učení, jako například rekurentních neuronových sítí. Nepodařilo se nám najít žádné přesvědčivé důkazy, které by nasvědčovaly, že přítomnost syntaktické informace výrazně ovlivňuje chování zvolených modelů.cs_CZ
uk.abstract.enOpinion Target Extraction (OTE) is a well-established subtask of sentiment analysis. While detecting sentiment polarity is useful in itself, the ability to extract the targets of the opinions allows for more thorough decision making. For example, an owner of a restaurant needs to know whether the guests are complaining about the food, or the ambience, or any other aspect of their establishment, etc. Despite the lexical information being crucial for the task, syntactic structures have potential in being used to correctly decide among multiple candidate entities. Rules based on such structures have been used previously for the task. The objective of this thesis is to investigate, whether syntactic information influences the behavior of the state-of-the-art models such as recurrent neural networks for the OTE task. We did not find any substantial evidence to suggest that adding the syntactic information influences the behavior of the models.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Ústav formální a aplikované lingvistikycs_CZ
thesis.grade.code2


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV