Základní problémy náhodných procházek
Essential problems of random walks
bakalářská práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/108965Identifikátory
SIS: 196208
Kolekce
- Kvalifikační práce [11987]
Autor
Vedoucí práce
Oponent práce
Pawlas, Zbyněk
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná matematika
Katedra / ústav / klinika
Katedra pravděpodobnosti a matematické statistiky
Datum obhajoby
4. 9. 2019
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Výborně
Klíčová slova (česky)
Náhodná procházka, vícerozměrná náhodná procházka, pravděpodobnost polohy v prostoru a v čase, návrat do počátku, zákon arku-sinuKlíčová slova (anglicky)
Random walk, more dimensional random walk, probability of a position in time and space, return to origin, return to equilibrium, arc sine lawV této práci se budeme zabývat (jednoduchou) náhodnou procház- kou v jednom, dvou a třech rozměrech. Nejprve zpracujeme některé základní problémy pro jednorozměrný případ. Budeme se věnovat pravděpodobnosti po- lohy na přímce v určitém čase, pravděpodobnosti návratu do počátku, otázce, zda máme návrat do počátku zaručený, a (diskrétnímu) zákonu arku-sinu. Některé z těchto výsledků zobecníme do více rozměrů. Konkrétně, ve dvou a třech dimen- zích vyřešíme problém pravděpodobnosti polohy v prostoru a v čase a pro syme- trickou náhodnou procházku se podíváme na návraty do počátku. 1
In this paper, we cover some essential problems of (simple) random walks in one, two and three dimensions. At the begining, we work only in one dimension. We find the probability of a position on a line at particular time. Then we study returns to origin and examine if return to origin is certain. Also, we look into a theorem called the arc sine law. Furthermore, we generalise some of those problems into two and three dimensions. We investigate a probability of a position in time and space and returns to origin. 1
