The complexity of constrained graph drawing
Složitost kreslení grafů s omezeními
diploma thesis (DEFENDED)
View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/107032Identifiers
Study Information System: 209672
Collections
- Kvalifikační práce [11242]
Author
Advisor
Referee
Fink, Jiří
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
Theoretical Computer Science
Department
Computer Science Institute of Charles University
Date of defense
10. 6. 2019
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
English
Grade
Excellent
Keywords (Czech)
rovinné grafy, částečně vnořené grafy, omezená rovinnost, výpočetní složitostKeywords (English)
planar graphs, partially embedded graphs, constrained planarity, computational complexityOznačkované nakreslení rovinného grafu G je uspořádaná dvojice (G, g) sklá- dající se z rovinného nakreslení G grafu G a z funkce g, jež přiřazuje popisky (barvy) jeho stěnám. V práci se zabýváme problémem Embedding Restriction Satisfiability (ERS), který řeší, zda má daný graf označkované nakreslení splňující předepsanou sadu podmínek. ERS je relativně nový problém, a tak se toho o něm zatím mnoho neví. Nicméně má velký potenciál. Zobecňuje totiž několik problémů hledajících specifická nakreslení grafů, jako je například problém částečně vno- řené rovinnosti (Partially Embedded Planarity). ERS se tedy může stát jedním z ústředích problémů v oblasti kreslení rovinných grafů. V této práci zkoumáme výpočetní složitost ERS. Jednak ukážeme, že ERS je NP-úplné, a poté vyšetříme složitost několika omezených verzí tohoto problému. Cílem je najít hranici mezi NP-těžkými a polynomiálními variantami. 1
A labeled embedding of a planar graph G is a pair (G, g) consisting of a planar drawing G of G and a function g assigning labels (colors) to the faces of G. We study the problem of Embedding Restriction Satisfiability (ERS) that investi- gates whether a given graph has a labeled embedding satisfying a provided set of conditions. ERS is a relatively new problem, so not much is known about it. Nevertheless, it has great potential. It generalizes several problems looking for a particular drawing of a planar graph, such as the problem of Partially Embedded Planarity. Therefore, ERS may become a focal point in the area of graph draw- ing. In this thesis, we examine the computational complexity of ERS. We show that ERS is NP-complete. After that, we look at the complexity of some specific classes of its instances. We try to locate the boundary between the NP-complete and the polynomial variants of the problem. 1