Show simple item record

Elliptic curves over finite fields
dc.contributor.advisorŠťovíček, Jan
dc.creatorBeran, Adam
dc.date.accessioned2018-10-03T09:40:44Z
dc.date.available2018-10-03T09:40:44Z
dc.date.issued2018
dc.identifier.urihttp://hdl.handle.net/20.500.11956/101663
dc.description.abstractIn this thesis, we study the theory of elliptic curves, with the main focus on elliptic curves over finite fields. We present basic theory, taking several technical aspects into consideration (singularity of the curve, effect of field characteristic on the form of the equation of elliptic curve). We algebraically deduce and formulate the group law, that is the definition of addition on a set of points on elliptic curve). We prove a known result saying that the set of points on elliptic curve under addition forms a group. We present an elementary proof, some of the calculations will be carried out in computer program Mathematica due to their complexity. Finally, we study endomorphisms of elliptic curves over finite fields (homomorphisms on the set of points on elliptic curve that are defined by rational functions). Using obtained results, we prove the Hasse's theorem, which provides an estimate of the order of the group of points on elliptic curve over finite field. 1en_US
dc.description.abstractV této práci se zabýváme teorií eliptických křivek, zvláštní pozornost věnujeme eliptickým křivkám nad konečnými tělesy. Představíme základní teorii, zohled- níme přitom několik technických aspektů (singularita křivky, vliv charakteristiky tělesa na rovnici křivky). Algebraicky odvodíme a zformulujeme grupový zákon neboli definici operace sčítání na množině bodů na eliptické křivce. Dále zpracu- jeme důkaz známého faktu, že množina bodů na eliptické křivce spolu s operací sčítání tvoří komutativní grupu. K důkazu přistoupíme elementárně, některé vý- počty z důvodu jejich náročnosti provedeme v počítačovém programu Mathema- tica. Nakonec studujeme endomorfismy eliptických křivek nad konečnými tělesy (homomorfismy na množině bodů eliptické křivky, jež jsou zadané racionálními funkcemi). Pomocí získaných výsledků dokážeme Hasseho větu, která poskytuje odhad na řád grupy bodů na eliptické křivce nad konečným tělesem. 1cs_CZ
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjecteliptické křivkycs_CZ
dc.subjectgrupový zákoncs_CZ
dc.subjectHasseho větacs_CZ
dc.subjectelliptic curvesen_US
dc.subjectgroup lawen_US
dc.subjectHasse's theoremen_US
dc.titleEliptické křivky nad konečnými tělesycs_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2018
dcterms.dateAccepted2018-09-12
dc.description.departmentKatedra algebrycs_CZ
dc.description.departmentDepartment of Algebraen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId170678
dc.title.translatedElliptic curves over finite fieldsen_US
dc.contributor.refereeŽemlička, Jan
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineMathematical Methods of Information Securityen_US
thesis.degree.disciplineMatematické metody informační bezpečnostics_CZ
thesis.degree.programMatematikacs_CZ
thesis.degree.programMathematicsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematické metody informační bezpečnostics_CZ
uk.degree-discipline.enMathematical Methods of Information Securityen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csV této práci se zabýváme teorií eliptických křivek, zvláštní pozornost věnujeme eliptickým křivkám nad konečnými tělesy. Představíme základní teorii, zohled- níme přitom několik technických aspektů (singularita křivky, vliv charakteristiky tělesa na rovnici křivky). Algebraicky odvodíme a zformulujeme grupový zákon neboli definici operace sčítání na množině bodů na eliptické křivce. Dále zpracu- jeme důkaz známého faktu, že množina bodů na eliptické křivce spolu s operací sčítání tvoří komutativní grupu. K důkazu přistoupíme elementárně, některé vý- počty z důvodu jejich náročnosti provedeme v počítačovém programu Mathema- tica. Nakonec studujeme endomorfismy eliptických křivek nad konečnými tělesy (homomorfismy na množině bodů eliptické křivky, jež jsou zadané racionálními funkcemi). Pomocí získaných výsledků dokážeme Hasseho větu, která poskytuje odhad na řád grupy bodů na eliptické křivce nad konečným tělesem. 1cs_CZ
uk.abstract.enIn this thesis, we study the theory of elliptic curves, with the main focus on elliptic curves over finite fields. We present basic theory, taking several technical aspects into consideration (singularity of the curve, effect of field characteristic on the form of the equation of elliptic curve). We algebraically deduce and formulate the group law, that is the definition of addition on a set of points on elliptic curve). We prove a known result saying that the set of points on elliptic curve under addition forms a group. We present an elementary proof, some of the calculations will be carried out in computer program Mathematica due to their complexity. Finally, we study endomorphisms of elliptic curves over finite fields (homomorphisms on the set of points on elliptic curve that are defined by rational functions). Using obtained results, we prove the Hasse's theorem, which provides an estimate of the order of the group of points on elliptic curve over finite field. 1en_US
uk.file-availabilityV
uk.publication-placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra algebrycs_CZ
thesis.grade.code1


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 3-5, 116 36 Praha; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV