Good volatility, bad volatility, and the cross-section of stock returns at different investment horizons
Good volatility, bad volatility, and the cross-section of stock returns at different investment horizons
diploma thesis (DEFENDED)
View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/99532Identifiers
Study Information System: 191477
Collections
- Kvalifikační práce [17632]
Author
Advisor
Referee
Kukačka, Jiří
Faculty / Institute
Faculty of Social Sciences
Discipline
Economics and Finance
Department
Institute of Economic Studies
Date of defense
20. 6. 2018
Publisher
Univerzita Karlova, Fakulta sociálních vědLanguage
English
Grade
Very good
Keywords (Czech)
Realized Volatility, Wavelet, Long-Memory Models, Cross-Section, Volatility Forecast, High-Frequency DataKeywords (English)
Realized Volatility, Wavelet, Long-Memory Models, Cross-Section, Volatility Forecast, High-Frequency DataStarting with the assumption that different investors have different investment time preferences and different risk tolerances within their given investment time-frames, this paper investigates the value of employing multiresolution analysis to model volatility and risk-pricing. In terms of estimation and fore- casting performance we were able to reduce by at least half the volatility fore- casting errors, with even better results at longer horizons. In regards to risk pricing we learn that extreme aggregate volatility (i.e. tail risk) is priced but regular volatility is not. Additionally we find that whilst aggregate volatility is generally more important over the long-horizon, during periods of market turmoil it is much more significant over the short-horizon. Finally we show that stocks with high sensitivity to aggregate volatility have lower subsequent returns supporting the idea that they become attractive as a hedge against market volatility. JEL Classification C12, C13, C21, C22, C31, C32, C51, C52, C53 Keywords Realized Volatility, Wavelet, Long-Memory Models, Cross-Section, Volatility Forecast, High-Frequency Data Author's e-mail tony sako@yahoo.com Supervisor's e-mail barunik@fsv.cuni.cz
Citace dokumentu
Metadata
Show full item recordRelated items
Showing items related by title, author, creator and subject.
-
Extending volatility models with market sentiment indicators
Defence status: DEFENDEDRöhryová, Lenka (Univerzita Karlova, Fakulta sociálních věd, 2018)Date of defense: 31. 1. 2018In this thesis, we aim to improve forecast accuracy of a heterogenous au- toregressive model (HAR) by including market sentiment indicators based on Google search volume and Twitter sentiment. We have analysed 30 com- ... -
POROVNÁNÍ RŮZNÝCH PŘÍSTUPŮ KE STANOVENÍ ANTIMONU POMOCÍ ATOMOVÉ FLUORESCENČNÍ SPEKTROMETRIE
Defence status: DEFENDEDAdámková, Dominika (Univerzita Karlova, Přírodovědecká fakulta, 2018)Date of defense: 4. 6. 2018Bakalářská práce se zabývá porovnáním tří způsobů generování těkavých sloučenin pro stanovení antimonitých a antimoničných iontů pomocí atomové fluorescenční spektrometrie. Pro porovnání jednotlivých stanovení byly vždy ... -
Extreme value theory: Empirical analysis of tail behaviour of GARCH models
Defence status: DEFENDEDŠiml, Jan (Univerzita Karlova, Fakulta sociálních věd, 2012)Date of defense: 20. 6. 2012Tato práce zkoumá schopnosti modelů z GARCH rodiny zachytit charakteristiky chvostů pomocí Monte Carlo simulace v rámci Podmíněné Teorie Extrémních Hod- not. Analýza je provedena pro tři modely GARCH typu: GARCH, EGARCH, ...