Structural properties of graphs and eficient algorithms: Problems Between Parameters
Strukturální vlastnosti grafů a efektivní algoritmy: Problémy separující parametry
rigorous thesis (RECOGNIZED)

View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/97960Identifiers
Study Information System: 201802
Collections
- Kvalifikační práce [11322]
Author
Advisor
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
Discrete Models and Algorithms
Department
Department of Applied Mathematics
Date of defense
28. 5. 2018
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
English
Grade
Recognized
Keywords (Czech)
Rozklady frafů, výpočetní složitost, parametrizovaná složitostKeywords (English)
Graph decompositions, computational complexity, parameterized complexityStrukturální vlastnosti grafů a efektivní algoritmy: Problémy separující parametry Dušan Knop Parametrizovaná složitost se v přůběhu posledních dvou dekád stala jednou z nejvýznamějších oblastí výpočetní složitosti. Strukturální vlastnosti grafů (také nazývané grafové šířky) hrají dnes centrální roli jak v teorii grafů tak v návrhu (parametrizovaných) algoritmů. V těto práci za pomoci studia konkrétních problémů poukazujeme na souvislost strukturálních vlastností grafů a možnosti získání parametrizovaného algoritmu. Předvádíme proto parametrizované algo- ritmy a těžkostní redukce pro problémy Target Set Selection, Minimum Length Bounded Cut a další. Vstupem problému Minimum Length Bounded Cut je graf, dva jeho vrcholy (zdroj a stok) a kladné celé číslo L. Úkolem pak je naleznout minimální množinu hran po jejímž odebrání bude vzdálenost mezi zdrojem a stokem více než L. Ukazujeme, že je možné naleznout optimální řešení pro tento problém algoritmem s časem běhu f(k)n, kde f je vyčíslitelná funkce a k je tree-depth n vrcholového grafu na vstupu. Naopak takovýto algoritmus nemůže existovat pro parametr tree-width (pokud FPT ̸= W[1]). V současné době je jen velmi málo známých problémů s touto vlastností....
Structural Properties of Graphs and Eficient Algorithms: Problems Between Parameters Dušan Knop Parameterized complexity became over last two decades one of the most impor- tant subfield of computational complexity. Structural graph parameters (widths) play important role both in graph theory and (parameterized) algoritmh design. By studying some concrete problems we exhibit the connection between struc- tural graph parameters and parameterized tractability. We do this by examining tractability and hardness results for the Target Set Selection, Minimum Length Bounded Cut, and other problems. In the Minimum Length Bounded Cut problem we are given a graph, source, sink, and a positive integer L and the task is to remove edges from the graph such that the distance between the source and the sink exceeds L in the resulting graph. We show that an optimal solution to the Minimum Length Bounded Cut problem can be computed in time f(k)n, where f is a computable function and k denotes the tree-depth of the input graph. On the other hand we prove that (under assumption that FPT ̸= W[1]) no such algorithm can exist if the parameter k is the tree-width of the input graph. Currently only few such problems are known. The Target Set Selection problem exibits the same phenomenon for the vertex cover number and...