Molecular characterization of γ -tubulin interactions with signalling molecules
Molekulární charakterizace interakcí γ -tubulinu se signálními molekulami
dissertation thesis (DEFENDED)

View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/95155Identifiers
Study Information System: 112297
Collections
- Kvalifikační práce [18434]
Author
Advisor
Referee
Binarová, Pavla
Svoboda, Augustin
Faculty / Institute
Faculty of Science
Discipline
Developmental biology
Department
Dep. of Physiology and Develop. Biology (obsolete)
Date of defense
15. 3. 2007
Publisher
Univerzita Karlova, Přírodovědecká fakultaLanguage
English
Grade
Pass
52 V. CONCLUSIONS The results of presented PhD thesis can be summarized as follows: For the first time it has been demonstrated that γ-tubulin forms complexes with αβ-tubulin dimers in brain tissue as well as in other models of neuronal differentiation. Two forms of γ- tubulin have been identified in complexes of various sizes. It has been shown that γ-tubulin is posttranslationally modified. One of the identified posttranslational modifications of γ-tubulin is phosphorylation that appears to depend on Src family kinase activity. It has been proposed that posttranslational modifications of γ-tubulin may regulate interactions of γ-tubulin with αβ-tubulin heterodimers or other associated proteins during neurogenesis. It has been shown that γ-tubulin associates with protein tyrosine kinases involved in signal transduction events. γ-Tubulin interaction with Src family kinases significantly increased after long-term RA-activation embryonal carcinoma P19 cells. A similar increase has been observed after rapid activation of mast cells, indicating that this regulatory mechanism is not restricted to a particular model system. In both models, Src family kinases bound to γ-tubulin are active and phosphorylate proteins present in γ-tubulin complexes. Fyn kinase interacts with γ-tubulin through its SH2 domain in a...
52 V. CONCLUSIONS The results of presented PhD thesis can be summarized as follows: For the first time it has been demonstrated that γ-tubulin forms complexes with αβ-tubulin dimers in brain tissue as well as in other models of neuronal differentiation. Two forms of γ- tubulin have been identified in complexes of various sizes. It has been shown that γ-tubulin is posttranslationally modified. One of the identified posttranslational modifications of γ-tubulin is phosphorylation that appears to depend on Src family kinase activity. It has been proposed that posttranslational modifications of γ-tubulin may regulate interactions of γ-tubulin with αβ-tubulin heterodimers or other associated proteins during neurogenesis. It has been shown that γ-tubulin associates with protein tyrosine kinases involved in signal transduction events. γ-Tubulin interaction with Src family kinases significantly increased after long-term RA-activation embryonal carcinoma P19 cells. A similar increase has been observed after rapid activation of mast cells, indicating that this regulatory mechanism is not restricted to a particular model system. In both models, Src family kinases bound to γ-tubulin are active and phosphorylate proteins present in γ-tubulin complexes. Fyn kinase interacts with γ-tubulin through its SH2 domain in a...