Stochastic Evolution Equations
Stochastické evoluční rovnice
rigorózní práce (UZNÁNO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/94341Identifikátory
SIS: 198981
Katalog UK: 990021695880106986
Kolekce
- Kvalifikační práce [11978]
Autor
Vedoucí práce
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Pravděpodobnost, matematická statistika a ekonometrie
Katedra / ústav / klinika
Katedra pravděpodobnosti a matematické statistiky
Datum obhajoby
4. 1. 2018
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Angličtina
Známka
Uznáno
Klíčová slova (česky)
stochastická evoluční rovnice, volterrovský proces, frakcionální Brownův pohyb, Rosenblattův proces, regularita, limitní míraKlíčová slova (anglicky)
Stochastic evolution equation, Volterra process, fractional Brownian motion, Rosenblatt process, regularity, limiting measureStochastické evoluční rovnice Petr Čoupek Disertační práce Abstrakt Tématem práce jsou lineární stochastické evoluční rovnice s aditivním regulárním volterrovským šumem. Regulární volterrovské procesy jsou stochastické procesy, které nemusejí být markovské, gaus- sovské a ani nemusejí být semimartingaly, ale namísto těchto vlastností mají jistou kovarianční struk- turu. Konkrétní příklady zahrnují frakcionální Brownův pohyb s Hurstovým parameterem H > 1/2 a, v negaussovském případě, Rosenblattův proces. Řešení uvažovaných stochastických rovnic je dáno vzorcem pro variaci konstant (v tzv. " mild" tvaru) a nabývá hodnot v separabilním Hilbertově pro- storu nebo v prostoru Lp(D; µ) pro velké p. V hilbertovském případě je studována zejména existence a regularita tohoto řešení a dále jeho chování pro velké časy. V případě, že řešení nabývá hodnot v prostoru Lp, je studována existence a regularita tohoto řešení a v konkrétních případech stochas- tických parciálních diferenciálních rovnic je ukázáno, že řešením je náhodné pole, které je spojité jak v časové, tak v prostorové proměnné.
Stochastic Evolution Equations Petr Čoupek Doctoral Thesis Abstract Linear stochastic evolution equations with additive regular Volterra noise are studied in the thesis. Regular Volterra processes need not be Gaussian, Markov or semimartingales, but they admit a certain covariance structure instead. Particular examples cover the fractional Brownian motion of H > 1/2 and, in the non-Gaussian case, the Rosenblatt process. The solution is considered in the mild form, which is given by the variation of constants formula, and takes values either in a separable Hilbert space or the space Lp(D, µ) for large p. In the Hilbert-space setting, existence, space-time regularity and large-time behaviour of the solutions are studied. In the Lp setting, existence and regularity is studied, and in concrete cases of stochastic partial differential equations, the solution is shown to be a space-time continuous random field.
