Kuželosečky jako řezy kuželové plochy
Conic sections as intersections of the cutting plane with the surface of a double cone
bakalářská práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/92745Identifikátory
SIS: 173334
Kolekce
- Kvalifikační práce [11978]
Autor
Vedoucí práce
Oponent práce
Moravcová, Vlasta
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Chemie se zaměřením na vzdělávání - Matematika se zaměřením na vzdělávání
Katedra / ústav / klinika
Katedra didaktiky matematiky
Datum obhajoby
12. 9. 2017
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Dobře
Klíčová slova (česky)
kuželosečky, kuželová plocha, řez kuželové plochy, řez válcové plochy, Quételetova--Dandelinova věta, aplikace kuželoseček, architektura, malířstvíKlíčová slova (anglicky)
Conic, conical surface, cross section, Quételet - Dandelin theorem, application of conics, architecture, paintings1 Abstract This bachelor thesis points out several blank spaces in the current tea- ching of conic sections. It concentrates mainly on the relation between the cutting of a conic surface and conic sections defined planimetrocally. Further on the thesis describes the origin of names for conic sections and adds many interesting details, like a cut of a cone by Dürer, relationship between an elliptical cut of a cylindrical surface and a sinusoid, and pointing out seve- ral chosen basic application of conic sections. A huge part of the thesis is dedicated to the characterization of specific uses of conic sections in archi- tecture and, mainly, in painting, and describing geometric reconstructions and analysis of specific art pieces with further commentary. 1
1 Abstract This bachelor thesis points out several blank spaces in the current tea- ching of conic sections. It concentrates mainly on the relation between the cutting of a conic surface and conic sections defined planimetrocally. Further on the thesis describes the origin of names for conic sections and adds many interesting details, like a cut of a cone by Dürer, relationship between an elliptical cut of a cylindrical surface and a sinusoid, and pointing out seve- ral chosen basic application of conic sections. A huge part of the thesis is dedicated to the characterization of specific uses of conic sections in archi- tecture and, mainly, in painting, and describing geometric reconstructions and analysis of specific art pieces with further commentary. 1
