On the fastest path in the pedestrian flow problem
Nejrychlejší cesta v problému proudění chodců
bakalářská práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/91360Identifikátory
SIS: 192482
Kolekce
- Kvalifikační práce [11242]
Autor
Vedoucí práce
Oponent práce
Dolejší, Vít
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná matematika
Katedra / ústav / klinika
Katedra numerické matematiky
Datum obhajoby
14. 9. 2017
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Angličtina
Známka
Výborně
Klíčová slova (česky)
proudění chodců, eikonalová rovnice, minimalizace funkcionaluKlíčová slova (anglicky)
pedestrian flow, eikonal equation, functional minimizationPráce se zabývá makroskopickým modelem proudění chodců. Ukazuje, jak spolu souvisejí dvě možné definice směru, kterým se chodec za- mýšlí vydat. Jedna z nich je založena na minimalizaci jistého funkcionálu a druhá na eikonálové rovnici. Eikonálová rovnice je odvozena ve dvourozměr- ném prostoru. Při tom je bráno v úvahu to, že výstupní bod nejrychlejší cesty k východu závisí na poloze chodce. Také jsou formulovány nutné podmínky pro to, aby po částech regulární křivka minimalizovala funkcionál v přidru- žené variační úloze s nestandardní Dirichletovou okrajovou podmínkou. 1
The work treats a macroscopic pedestrian flow model. It shows the link of two possible definitions of the pedestrians' preferred direction of movement, one based on minimization of a functional, the other using the eikonal equation. The eikonal equation is derived in two dimensions, taking into account that the distant endpoint of the fastest path to the exit depends on the location of the pedestrian under consideration. Also, necessary condi- tions for a piecewise regular curve to be the minimizer of a certain functional in a related two-dimensional variational problem with non-standard Dirichlet boundary condition are formulated. 1