Zobrazit minimální záznam

Modelování růstu porézních vrstev oxidů kovů v procesu anodické oxidace
dc.contributor.advisorHron, Jaroslav
dc.creatorHabera, Michal
dc.date.accessioned2021-03-24T10:22:11Z
dc.date.available2021-03-24T10:22:11Z
dc.date.issued2017
dc.identifier.urihttp://hdl.handle.net/20.500.11956/90997
dc.description.abstractPri vhodných podmienkach vedie anodická oxidácia k rastu komplexných poréznych štruktúr. Zrod a rast týchto štruktúr je zaujímavou a náročnou úlohou pre elektrochemické modelovanie. Je nutné identifikovať chemické reakcie vo viacfázovom systéme, odvodiť pre ne parciálne diferenciálne rovnice a riešiť ich v časovo závislých oblastiach. V tejto práci je prezentovaný elektrochemický model pre rast oxidu v nano škálach. Fyzikálne motivované rovnice sú formulované s presným matematickým významom a je skúmaná existencia riešenia. Je hľadaný elektrostatický potenciál splňujúci zákon vodivosti vo vysokých elektrických poliach a skokové podmienky na rozhraniach. Numerická diskretizácia je zavedená pomocou metódy konečných prvkov a voľné hranice sú sledované pomocou level- set metódy. Je podaný základný mechanizmus riadiaci rast poréznych štruktúr a numerické experimenty sú vysvetlené na jeho základe. Táto diplomová práca prináša nové poznatky do súčasného elektrochemického a matematického pohľadu na rast nanopórov.cs_CZ
dc.description.abstractUnder suitable conditions anodic metal oxidation leads to growth of complex porous structures. The initiation and growth of these structures is an interesting and challenging task for electrochemical modelling. One must identify chemical reactions in a multi-phase framework, derive a proper partial differential equations and solve them in time dependent domains. In this work, electrochemical model for the oxide growth in nano scales is presented. Physically motivated equations are formulated with precise mathematical meaning and existence of solutions is studied. Electrostatic potential fulfilling high-field conduction law and interfacial jump conditions is sought for. Numerical discretization is performed with the use of finite element method and free boundaries are tracked with characteristic level-set functions. Basic mechanism governing the growth of porous structures is given and numerical experiments are explained on it's basis. This thesis presents novel contributions to the electrochemical and mathematical picture of nanopores growth.en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectanodic oxidationen_US
dc.subjectgrowth of nanotubes layersen_US
dc.subjectanodická oxidacecs_CZ
dc.subjectrůst vrstvy nanotrubekcs_CZ
dc.titleModeling of porous metal oxide layer growth in the anodization processen_US
dc.typediplomová prácecs_CZ
dcterms.created2017
dcterms.dateAccepted2017-09-12
dc.description.departmentMathematical Institute of Charles Universityen_US
dc.description.departmentMatematický ústav UKcs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId177010
dc.title.translatedModelování růstu porézních vrstev oxidů kovů v procesu anodické oxidacecs_CZ
dc.contributor.refereePavelka, Michal
dc.identifier.aleph002153672
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineMatematické a počítačové modelování ve fyzicecs_CZ
thesis.degree.disciplineMathematical and Computational Modelling in Physicsen_US
thesis.degree.programPhysicsen_US
thesis.degree.programFyzikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Matematický ústav UKcs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Mathematical Institute of Charles Universityen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematické a počítačové modelování ve fyzicecs_CZ
uk.degree-discipline.enMathematical and Computational Modelling in Physicsen_US
uk.degree-program.csFyzikacs_CZ
uk.degree-program.enPhysicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csPri vhodných podmienkach vedie anodická oxidácia k rastu komplexných poréznych štruktúr. Zrod a rast týchto štruktúr je zaujímavou a náročnou úlohou pre elektrochemické modelovanie. Je nutné identifikovať chemické reakcie vo viacfázovom systéme, odvodiť pre ne parciálne diferenciálne rovnice a riešiť ich v časovo závislých oblastiach. V tejto práci je prezentovaný elektrochemický model pre rast oxidu v nano škálach. Fyzikálne motivované rovnice sú formulované s presným matematickým významom a je skúmaná existencia riešenia. Je hľadaný elektrostatický potenciál splňujúci zákon vodivosti vo vysokých elektrických poliach a skokové podmienky na rozhraniach. Numerická diskretizácia je zavedená pomocou metódy konečných prvkov a voľné hranice sú sledované pomocou level- set metódy. Je podaný základný mechanizmus riadiaci rast poréznych štruktúr a numerické experimenty sú vysvetlené na jeho základe. Táto diplomová práca prináša nové poznatky do súčasného elektrochemického a matematického pohľadu na rast nanopórov.cs_CZ
uk.abstract.enUnder suitable conditions anodic metal oxidation leads to growth of complex porous structures. The initiation and growth of these structures is an interesting and challenging task for electrochemical modelling. One must identify chemical reactions in a multi-phase framework, derive a proper partial differential equations and solve them in time dependent domains. In this work, electrochemical model for the oxide growth in nano scales is presented. Physically motivated equations are formulated with precise mathematical meaning and existence of solutions is studied. Electrostatic potential fulfilling high-field conduction law and interfacial jump conditions is sought for. Numerical discretization is performed with the use of finite element method and free boundaries are tracked with characteristic level-set functions. Basic mechanism governing the growth of porous structures is given and numerical experiments are explained on it's basis. This thesis presents novel contributions to the electrochemical and mathematical picture of nanopores growth.en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Matematický ústav UKcs_CZ
thesis.grade.code1
dc.contributor.consultantSouček, Ondřej
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO
dc.identifier.lisID990021536720106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV