Detection of malignant melanoma in histological sample using deep neural networks
Detekce maligního melanomu v histologickém preparátu pomocí hlubokých neuronových sítí
bakalářská práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/86136Identifikátory
SIS: 188609
Kolekce
- Kvalifikační práce [11978]
Autor
Vedoucí práce
Oponent práce
Straka, Milan
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná informatika
Katedra / ústav / klinika
Katedra softwarového inženýrství
Datum obhajoby
20. 6. 2017
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Angličtina
Známka
Výborně
Klíčová slova (česky)
maligní melanom, analýza digitálního obrazu, hluboké učeníKlíčová slova (anglicky)
malignant melanoma, digital image analysis, deep learningThe aim of this thesis is to create a classification method for detection of ma- lignant melanoma in high-resolution digital images. Deep convolutional neural networks were used for this task. At first, a short overview of malignant melanoma and ways to detect it is presented. Deep convolutional neural networks are also introduced with a special attention given to models used further in this work. Several ways to generate samples from the provided histological images are discussed, and several experiments are evaluated to decide how to maximize the accuracy of employed classification methods. The thesis then focuses on several neural network structures used for image classification and their possible utiliza- tion for the given task. The emphasis is laid on the transfer learning, a method used for modifying already trained models for different tasks. This method is then used for training several classifiers. Further on, several methods for the visualization of model results are discussed with some of them implemented. The experiments show promising results on par with other studies dealing with similar problems. Several possibilities for further development are listed in the conclusion.
