Algebraic, Structural, and Complexity Aspects of Geometric Representations of Graphs
Algebraické, strukturální a výpočetní vlastnosti geometrických reprezentací grafů
diplomová práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/83134Identifikátory
SIS: 172412
Katalog UK: 990021036140106986
Kolekce
- Kvalifikační práce [11981]
Autor
Vedoucí práce
Oponent práce
Nešetřil, Jaroslav
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Diskrétní modely a algoritmy
Katedra / ústav / klinika
Informatický ústav Univerzity Karlovy
Datum obhajoby
13. 9. 2016
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Angličtina
Známka
Výborně
Klíčová slova (česky)
geometrické reprezentace grafů, průnikové reprezentace, grupy automorfismů, rozšiřování částečných reprezentacíKlíčová slova (anglicky)
geometric representations of graphs, intersection representations, automorphism groups, partial representation extensionTitle: Algebraic, Structural and Complexity Aspects of Geometric Representations of Graphs Author: Peter Zeman Department: Computer Science Institute Supervisor: RNDr. Pavel Klavík Supervisor's e-mail: klavik@iuuk.mff.cuni.cz Keywords: automorphism groups, interval graphs, circle graphs, comparability graphs, H-graphs, recognition, dominating set, graph isomorphism, maximum clique, coloring Abstract: We study symmetries of geometrically represented graphs. We describe a tech- nique to determine the automorphism group of a geometrically represented graph, by understanding the structure of the induced action on all geometric representations. We prove that interval graphs have the same automorphism groups as trees, and for a given interval graph, we construct a tree with the same automorphism group which answers a question of Hanlon [Trans. Amer. Math. Soc 272(2), 1982]. For permutation and circle graphs, we give an inductive characterization by semidirect and wreath prod- ucts. We also prove that every abstract group can be realized by the automorphism group of a comparability graph/poset of the dimension at most four. We also study H-graphs, introduced by Biró, Hujter, and Tuza in 1992. Those are intersection graphs of connected subgraphs of a subdivision of a graph H. This thesis is the first comprehensive...
