Between homogeneity and rigidity
Mezi homogenitou a rigiditou
diploma thesis (DEFENDED)

View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/83110Identifiers
Study Information System: 167604
CU Caralogue: 990021041020106986
Collections
- Kvalifikační práce [11338]
Author
Advisor
Referee
Šaroch, Jan
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
Mathematical structures
Department
Mathematical Institute of Charles University
Date of defense
15. 9. 2016
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
English
Grade
Excellent
Keywords (Czech)
Fraisse limita, Fraisse trida, homogeni struktura, rigidni struktura, Katetuv funktorKeywords (English)
Fraisse limit, Fraisse class, homogeneous structure, rigid structure, Katetov functorWe study uncountable variants of structures that have the extension property for embeddings with respect to some Fraïssé class C. We call such structures Fraïssé-like structures. These structures are usually not uniquely determined. It was known that under the existence of Katětov functor for C there are Fraïssé-like structures of arbitrary big cardinality (density) with rich group of automorphisms. We show that in case where C is a class of all finite graphs or all finite metric spaces we may find Fraïssé-like structure of cardinality (density) ℵ1 with trivial group of automorphisms. We give an answer to a recent question from W. Kubi's, D. Mašulovi'c, Katětov functors, to appear in Applied Categorical Structures by constructing a Fraïssé class without a Katětov functor. 1
Studujeme nespočetné struktury, které splňují exstension property vzhledem k nějaké Fraïssé třídě C. Takovým strukturám říkáme Fraïssé-like struktury. Tyto struktury nejsou většinou jednoznačně určeny. Je známo, že pokud existuje Katětov funktor pro C, pak existují Fraïssé-like struktury libovolné kardinality s bohatou grupou automorfismů. Ukážeme, že v případě třídy všech konečných grafů a všech konečných metrických prostorů existuje Fraïssé-like struktura, která má kardinalitu ℵ1 a její grupa automorfismů je triviální. Dále zodpovíme otázku z W. Kubi's, D. Mašulovi'c, Katětov functors, to appear in Applied Categorical Structures tak, že nalezneme Fraïssé třídu bez Katětova funktoru. 1