Bisektory
Bisectors
bakalářská práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/82527Identifikátory
SIS: 148480
Katalog UK: 990020250900106986
Kolekce
- Kvalifikační práce [11987]
Autor
Vedoucí práce
Oponent práce
Kalenda, Ondřej
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná matematika
Katedra / ústav / klinika
Katedra matematické analýzy
Datum obhajoby
3. 9. 2015
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Velmi dobře
Klíčová slova (česky)
Minkowského funkcionál, kvazimetrika d_C, bisektorKlíčová slova (anglicky)
Minkowski functional, quasimetrics d_C, bisectorTato práce se zabývá studiem bisektorů (tj. množin bodů stejně vzdálených od dvou daných bodů) a vlivem jejich tvaru na tvar jednotkové koule. Je známo, že pokud každý bisektor dvojice protilehlých bodů na sféře normovaného lineárního prostoru leží v nadrovině, pak je již norma dána skalárním součinem (pro speciální normu v R2 je to dokázáno ve Větě 18). Zde se zabýváme zobecněním tohoto tvrzení v prostoru R2 pro případ (a priori) nesymetrické jednotkové koule. Konkrétně ukážeme, že pokud má množina bodů x z jednotkové sféry takových, že bisektor bodů x a −x je přímka, neprázdný vnitřek vzhledem ke sféře, pak jednotková sféra - pokud je hladká - je již elipsou se středem v počátku. Práce je založena na preprintu [1]. 1
This work deals with the study of bisectors (i.e. sets of points of equal distance from two given points) and the impact of their shape on the shape of the unit ball. It is known that if each bisector of two antipodal points on the sphere of a normed linear space lies in a hyperplane, then the norm is an inner product norm (for a special case of norm in R2 it is proved in Theorem 18). Here we generalise this statement in R2 for the case of (a priori) non-symmetric unit ball. In particular, we show that if the set of points x in the unit sphere, such that the bisector of x and −x is a line, has non-empty interior with respect to the sphere and the sphere is smooth, then the unit sphere is an ellipse centred at the origin. The work is based on the preprint [1]. 1
