Model constructions for bounded arithmetic
Konstrukce modelů omezené aritmetiky
dizertační práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/81347Identifikátory
SIS: 114003
Katalog UK: 990020360060106986
Kolekce
- Kvalifikační práce [11987]
Autor
Vedoucí práce
Konzultant práce
Pudlák, Pavel
Oponent práce
Buss, Samuel
Thapen, Neil
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Algebra, teorie čísel a matematická logika
Katedra / ústav / klinika
Katedra algebry
Datum obhajoby
22. 9. 2015
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Angličtina
Známka
Prospěl/a
Klíčová slova (česky)
formální teorie, nestandardní model, třída složitostiKlíčová slova (anglicky)
formal theory, nonstandard model, complexity classNázev práce: Konstrukce modelů omezené aritmetiky Autor: Michal Garlík Abstrakt: Studujeme konstrukce modelů teorií omezené aritmetiky. Pomocí základních technik teorie modelů podáme nový důkaz Ajtaiovy věty o úplnosti pro nestandardně konečné struktury. Za použití omezené redukované mocniny (zobecnění ultraproduktu) navrhneme dvě nové metody konstrukce modelů ome- zené aritmetiky. První dá nový důkaz Bussovy dosvědčující věty. Druhou metodou ukážeme, že teorie R1 2 je silnější než její varianta strictR1 2 za věrohodného výpo- četně-složitostního předpokladu (existence dostatečně silné jednosměrné permu- tace) a že za stejného předpokladu je teorie PV1 + Σb 1(PV ) − LLIND silnější než PV1 + strictΣb 1(PV ) − LLIND. Pro relativizované teorie dokážeme, že R1 2(α) je silnější strictR1 2(α) (bez dodatečného předpokladu). 1
Title: Model constructions for bounded arithmetic Author: Michal Garlík Abstract: We study constructions of models of bounded arithmetic theories. Us- ing basic techniques of model theory we give a new proof of Ajtai's completeness theorem for nonstandard finite structures. Working in the framework of restricted reduced powers (a generalization of the ultrapower construction) we devise two methods of constructing models of bounded arithmetic. The first one gives a new proof of Buss's witnessing theorem. Using the second method we show that the theory R1 2 is stronger than its variant strictR1 2 under a plausible computational assumption (the existence of a strong enough one-way permutation), and that the theory PV1 + Σb 1(PV ) − LLIND is stronger than PV1 + strictΣb 1(PV ) − LLIND under the same assumption. Considering relativized theories, we show that R1 2(α) is stronger than strictR1 2(α) (unconditionally). 1
