Zobrazit minimální záznam

Hamiltonovskost hyperkrychlí bez k-hadů a k-cívek
dc.contributor.advisorGregor, Petr
dc.creatorPěgřímek, David
dc.date.accessioned2017-06-01T08:45:45Z
dc.date.available2017-06-01T08:45:45Z
dc.date.issued2016
dc.identifier.urihttp://hdl.handle.net/20.500.11956/77472
dc.description.abstractHad (cívka) je indukovaná cesta (cyklus) v hyperkrychli. Jsou známí především problé- mem hada v krabici (cívky v krabici) snažící se najít nejdelšího hada (cívku) v hyperkrychli. Jejich zobecnění k-hadi (k-cívky) zachovávají vzdálenosti mezi každými dvěma svými vr- choly, které jsou vzdálené nejvýše k−1 v hyperkrychli. Studujeme je v souvislosti s Lockeho hypotézou. Ta říká, že vyvážené množině F ⊆ V (Qn) vadných vrcholů v hyperkrychli veli- kosti 2m se lze vyhnout Hamiltonovským cyklem pokud n ≥ m+2 a m ≥ 1. My ukazujeme, že pokud S je k-had (k-cívka) pro n ≥ k ≥ 6 (n ≥ k ≥ 7), pak Qn −V (S) je Hamiltonovsky laceabilní. Pro fixované k může být počet vrcholů k-cívky až exponenciální vzhledem k n. Představujeme pojem draka, což je indukovaný strom v hyperkrychli a jeho zobecnění na k-draka, který zachovává vzdálenost mezi každými dvěma svými vrcholy, které jsou vzdá- lené nejvýše k − 1 v hyperkrychli. Dokazujeme specifické lemma které bylo v Bakalářské práci pouze ověřeno počítačem a dokončuje tak důkaz tvrzení o Hamiltonovské laceabilitě hyperkrychlí bez n-draků.cs_CZ
dc.description.abstractA snake (coil) is an induced path (cycle) in a hypercube. They are well known from the snake-in-the-box (coil-in-the-box) problem which asks for the longest snake (coil) in a hypercube. They have been generalized to k-snakes (k-coils) which preserve distances between their every two vertices at distance at most k − 1 in hypercube. We study them as a variant of Locke's hypothesis. It states that a balanced set F ⊆ V (Qn) of cardinality 2m can be avoided by a Hamiltonian cycle if n ≥ m + 2 and m ≥ 1. We show that if S is a k-snake (k-coil) in Qn for n ≥ k ≥ 6 (n ≥ k ≥ 7), then Qn − V (S) is Hamiltonian laceable. For a fixed k the number of vertices of a k-coil may even be exponential with n. We introduce a dragon, which is an induced tree in a hypercube, and its generalization a k-dragon which preserves distances between its every two vertices at distance at most k−1 in hypercube. By proving a specific lemma from my Bachelor thesis that was previously verified by a computer, we finish the proof of the theorem regarding Hamiltonian laceability of hypercubes without n-dragons.en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjecthyperkrychlecs_CZ
dc.subjectvadný vrcholcs_CZ
dc.subjectHamiltonovskostcs_CZ
dc.subjectk-hadcs_CZ
dc.subjectk-cívkacs_CZ
dc.subjecthypercubeen_US
dc.subjectfaulty vertexen_US
dc.subjectHamiltonicityen_US
dc.subjectk-snakeen_US
dc.subjectk-coilen_US
dc.titleHamiltonicity of hypercubes without k-snakes and k-coilsen_US
dc.typediplomová prácecs_CZ
dcterms.created2016
dcterms.dateAccepted2016-06-20
dc.description.departmentDepartment of Theoretical Computer Science and Mathematical Logicen_US
dc.description.departmentKatedra teoretické informatiky a matematické logikycs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId164176
dc.title.translatedHamiltonovskost hyperkrychlí bez k-hadů a k-cívekcs_CZ
dc.contributor.refereeFink, Jiří
dc.identifier.aleph002093345
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineTeoretická informatikacs_CZ
thesis.degree.disciplineTheoretical Computer Scienceen_US
thesis.degree.programInformatikacs_CZ
thesis.degree.programComputer Scienceen_US
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra teoretické informatiky a matematické logikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Theoretical Computer Science and Mathematical Logicen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csTeoretická informatikacs_CZ
uk.degree-discipline.enTheoretical Computer Scienceen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enComputer Scienceen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csHad (cívka) je indukovaná cesta (cyklus) v hyperkrychli. Jsou známí především problé- mem hada v krabici (cívky v krabici) snažící se najít nejdelšího hada (cívku) v hyperkrychli. Jejich zobecnění k-hadi (k-cívky) zachovávají vzdálenosti mezi každými dvěma svými vr- choly, které jsou vzdálené nejvýše k−1 v hyperkrychli. Studujeme je v souvislosti s Lockeho hypotézou. Ta říká, že vyvážené množině F ⊆ V (Qn) vadných vrcholů v hyperkrychli veli- kosti 2m se lze vyhnout Hamiltonovským cyklem pokud n ≥ m+2 a m ≥ 1. My ukazujeme, že pokud S je k-had (k-cívka) pro n ≥ k ≥ 6 (n ≥ k ≥ 7), pak Qn −V (S) je Hamiltonovsky laceabilní. Pro fixované k může být počet vrcholů k-cívky až exponenciální vzhledem k n. Představujeme pojem draka, což je indukovaný strom v hyperkrychli a jeho zobecnění na k-draka, který zachovává vzdálenost mezi každými dvěma svými vrcholy, které jsou vzdá- lené nejvýše k − 1 v hyperkrychli. Dokazujeme specifické lemma které bylo v Bakalářské práci pouze ověřeno počítačem a dokončuje tak důkaz tvrzení o Hamiltonovské laceabilitě hyperkrychlí bez n-draků.cs_CZ
uk.abstract.enA snake (coil) is an induced path (cycle) in a hypercube. They are well known from the snake-in-the-box (coil-in-the-box) problem which asks for the longest snake (coil) in a hypercube. They have been generalized to k-snakes (k-coils) which preserve distances between their every two vertices at distance at most k − 1 in hypercube. We study them as a variant of Locke's hypothesis. It states that a balanced set F ⊆ V (Qn) of cardinality 2m can be avoided by a Hamiltonian cycle if n ≥ m + 2 and m ≥ 1. We show that if S is a k-snake (k-coil) in Qn for n ≥ k ≥ 6 (n ≥ k ≥ 7), then Qn − V (S) is Hamiltonian laceable. For a fixed k the number of vertices of a k-coil may even be exponential with n. We introduce a dragon, which is an induced tree in a hypercube, and its generalization a k-dragon which preserves distances between its every two vertices at distance at most k−1 in hypercube. By proving a specific lemma from my Bachelor thesis that was previously verified by a computer, we finish the proof of the theorem regarding Hamiltonian laceability of hypercubes without n-dragons.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra teoretické informatiky a matematické logikycs_CZ
dc.identifier.lisID990020933450106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV