Nekomutativní Gröbnerovy báze
Non-commutative Gröbner bases
diplomová práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/76635Identifikátory
SIS: 93068
Katalog UK: 990020708360106986
Kolekce
- Kvalifikační práce [11978]
Autor
Vedoucí práce
Oponent práce
Stanovský, David
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Matematické metody informační bezpečnosti
Katedra / ústav / klinika
Katedra algebry
Datum obhajoby
11. 2. 2016
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Velmi dobře
Klíčová slova (česky)
Gröbnerova báze, přípustné uspořádání, obstrukce, Buchbergerův algoritmus, Gebauer-Möller kritériaKlíčová slova (anglicky)
Gröbner basis, admissible ordering, obstruction, Buchberger algorithm, Gebauer-Möller criteriaV předložené práci definujeme nekomutativní Gröbnerovy báze, včetně potřebných základů nekomutativní algebry a pojmu přípustné uspořádání. Je zde představena nekomutativní varianta Buchbergerova algoritmu a podrobně studována vylepšení vedoucí k efektivnímu výpočtu. Studium netriviálních obstrukcí nás přivádí k analogii Gebauer-Möller kritérií vedoucích k odstranění většině nadbytečných obstrukcí v nekomutativním případě. Uvádíme zde grafickou interpretaci obstrukcí. Vylepšení algoritmu lze také dosáhnout pomocí redundantních polynomů. Tato práce je shrnutím a zpřesněním výsledků některých známých autorů zabývajících se touto problematikou. V práci definované pojmy jsou ilustrovány na příkladech. Předkládáme zde důkazy některých tvrzení, která byla odlišným způsobem dokázána jinými autory. Powered by TCPDF (www.tcpdf.org)
In the presented work we define non-commutative Gröbner bases including the necessary basis of non- commutative algebra theory and notion admissible ordering. We present non-commutative variant of the Buchberger algorithm and study how the algorithm can be improved. Analogous to the Gebauer-Möller criteria lead us to detect almost all unnecessary obstructions in the non-commutative case. The obstructions are graphically ilustrated. The Buchberger algorithm can be improved within redundant polynomials. This work is a summary and its specification of the results of some known authors engaged in this field. Presented definitions are ilustrated on examples. We perform proves of some of the statements which have been proven differently by other authors. Powered by TCPDF (www.tcpdf.org)
