Content based Recommendation from Explicit Ratings
Content based Recommendation from Explicit Ratings
diplomová práce (NEOBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/75847Identifikátory
SIS: 151236
Katalog UK: 990021007780106986
Kolekce
- Kvalifikační práce [11978]
Autor
Vedoucí práce
Oponent práce
Peška, Ladislav
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Softwarové systémy
Katedra / ústav / klinika
Katedra softwarového inženýrství
Datum obhajoby
16. 6. 2016
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Angličtina
Známka
Neprospěl
Klíčová slova (česky)
doporučovací systémy, obsah, explicitní hodnoceníKlíčová slova (anglicky)
recommender systems, content, explicit ratingV této práci porovnáváme několik modelů pro predikci uživatelských preferencí. Hlavním zaměřením jsou tzv. Content Based modely, které pracují s metadatami o objektech, které doporučujeme. Ty jsou srovnány s dalšími modely, které metadata neberou do úvahy. Pro získaní výsledků používáme tři datasety a tři metriky. Cílem diplomové práce je zjistit, jak můžou metadata o uživatelích a objektech zlepšit standardní modely pro doporučení. Výsledkem ale je, že metadata sice můžou zlepšit doporučení v některých případech, záleží ale na datasetu a na metrice, která byla použita. Toto zlepšení většinou není významné.
In the thesis we compare several models for prediction of user preferences. The focus is mainly on Content Based models which work with metadata about objects that are recommended. These models are compared with other models which do not use metadata for recommendation. We use three datasets and three metrics to get the results of recommendation. The goal of the thesis is to find out how can the metadata about the users and the objects enhance the standard recommender models. However, the result is that the metadata can enhance recommendation in some cases, but it varies by used metrics and dataset. This enhancement is not significant.
