dc.contributor.advisor | Malý, Jan | |
dc.creator | Skovajsa, Břetislav | |
dc.date.accessioned | 2021-05-20T15:18:31Z | |
dc.date.available | 2021-05-20T15:18:31Z | |
dc.date.issued | 2016 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/74578 | |
dc.description.abstract | Cílem této práce je vybudovat základy zobecněných obyčejných diferenciálních rovnic v metrických prostorech. Diferenciální rovnice v metrických prostorech již byly studovány dříve, avšak zvolený přístup není schopen zahrnout obecnější druhy integrálních rovnic. Práce nabízí definici, která kombinuje obecnost met- rických prostorů se silou Kurzweilových zobecněných obyčejných diferenciálních rovnic. Dále prezentujeme věty o jednoznačnosti a existenci, které poskytují nové výsledky i v kontextu euklidovských prostorů. | cs_CZ |
dc.description.abstract | The aim of this thesis is to build the foundations of generalized ordinary differ- ential equation theory in metric spaces. While differential equations in metric spaces have been studied before, the chosen approach cannot be extended to in- clude more general types of integral equations. We introduce a definition which combines the added generality of metric spaces with the strength of Kurzweil's generalized ordinary differential equations. Additionally, we present existence and uniqueness theorems which offer new results even in the context of Euclidean spaces. | en_US |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | generalized ordinary differential equations | en_US |
dc.subject | metric spaces | en_US |
dc.subject | curves | en_US |
dc.subject | Henstock-Kurzweil integral | en_US |
dc.subject | zobecněné obyčejné diferenciální rovnice | cs_CZ |
dc.subject | metrické prostory | cs_CZ |
dc.subject | křivky | cs_CZ |
dc.subject | Henstock-Kurzweilův integrál | cs_CZ |
dc.title | Generalized ordinary differential equations in metric spaces | en_US |
dc.type | rigorózní práce | cs_CZ |
dcterms.created | 2016 | |
dcterms.dateAccepted | 2016-12-14 | |
dc.description.department | Katedra matematické analýzy | cs_CZ |
dc.description.department | Department of Mathematical Analysis | en_US |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 186201 | |
dc.title.translated | Zobecněné obyčejné diferenciální rovnice v metrických prostorech | cs_CZ |
dc.identifier.aleph | 002117243 | |
thesis.degree.name | RNDr. | |
thesis.degree.level | rigorózní řízení | cs_CZ |
thesis.degree.discipline | Mathematical Analysis | en_US |
thesis.degree.discipline | Matematická analýza | cs_CZ |
thesis.degree.program | Mathematics | en_US |
thesis.degree.program | Matematika | cs_CZ |
uk.thesis.type | rigorózní práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra matematické analýzy | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Mathematical Analysis | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Matematická analýza | cs_CZ |
uk.degree-discipline.en | Mathematical Analysis | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Uznáno | cs_CZ |
thesis.grade.en | Recognized | en_US |
uk.abstract.cs | Cílem této práce je vybudovat základy zobecněných obyčejných diferenciálních rovnic v metrických prostorech. Diferenciální rovnice v metrických prostorech již byly studovány dříve, avšak zvolený přístup není schopen zahrnout obecnější druhy integrálních rovnic. Práce nabízí definici, která kombinuje obecnost met- rických prostorů se silou Kurzweilových zobecněných obyčejných diferenciálních rovnic. Dále prezentujeme věty o jednoznačnosti a existenci, které poskytují nové výsledky i v kontextu euklidovských prostorů. | cs_CZ |
uk.abstract.en | The aim of this thesis is to build the foundations of generalized ordinary differ- ential equation theory in metric spaces. While differential equations in metric spaces have been studied before, the chosen approach cannot be extended to in- clude more general types of integral equations. We introduce a definition which combines the added generality of metric spaces with the strength of Kurzweil's generalized ordinary differential equations. Additionally, we present existence and uniqueness theorems which offer new results even in the context of Euclidean spaces. | en_US |
uk.file-availability | V | |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzy | cs_CZ |
thesis.grade.code | U | |
uk.publication-place | Praha | cs_CZ |
uk.thesis.defenceStatus | U | |
dc.identifier.lisID | 990021172430106986 | |