Exceptional Sets in Mathematical Analysis
Výjimečné množiny v matematické analýze
rigorous thesis (RECOGNIZED)
View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/74570Identifiers
Study Information System: 185685
Collections
- Kvalifikační práce [11242]
Author
Advisor
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
Mathematical Analysis
Department
Department of Mathematical Analysis
Date of defense
6. 12. 2016
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
English
Grade
Recognized
Keywords (Czech)
sigma-pórovitá množina, elementární submodel, Banachův prostor, c-odstranitelná množina, konvexní funkceKeywords (English)
sigma-porous set, elementary submodel, Banach space, c-removable set, convex functionNázev práce: Výjimečné množiny v matematické analýze Autor: Martin Rmoutil Katedra: Katedra Matematické Analýzy Vedoucí disertační práce: Doc. RNDr. Ondřej Kalenda, Ph.D., DSc., Katedra matematické ana- lýzy Abstrakt: Tato práce sestává ze čtyř odborných článků. V prvním článku studujeme pojem σ-zdola pórovitých množin; hlavním výsled- kem je konstrukce uzavřených množin A, B ⊂ R, které nejsou σ-zdola pórovité a jejichž součin v R2 je zdola pórovitý. Ve druhém a třetím článku používáme množinově-teoretickou metodu založenou na Löwenheim-Skolemově větě (tzv. metodu elementárních submodelů) k důkazu separabilní determinovanosti jistých σ-ideálů množin v Bana- chových prostorech. Činíme tak nejprve pro pojmy σ-pórovitosti a σ- zdola pórovitosti (v článku druhém) a zjemněním použitých metod pak ve třetím článku dostaneme separabilní determinovanost dalších vlastností. V obou případech dostáváme zajímavé důsledky v podobě rozšíření vět známých pro separabilní prostory do kontextu nesepara- bilního; například: Libovolná spojitá konvexní funkce na Asplundově prostoru je fréchetovsky diferencovatelná ve všech bodech mimo ku- želově malou (cone small) množinu. Čtvrtý článek zavádí následující pojem. Řekneme, že uzavřená množina A ⊂ R je c-odstranitelná, jest- liže platí: Reálná funkce f je konvexní na Rd , kdykoliv...
Title: Exceptional Sets in Mathematical Analysis Author: Martin Rmoutil Department: Department of Mathematical Analysis Supervisor: Doc. RNDr. Ondřej Kalenda, Ph.D., DSc., Department of Mathematical Analysis Abstract: The present thesis consists of four research articles. In the first paper we study the notion of σ-lower porous set; our main result is the existence of two closed sets A, B ⊂ R which are not σ-lower porous, but their product in R2 is lower porous. In the second and third article we use a set-theoretical method of el- ementary submodels involving the Lwenheim-Skolem theorem to prove that certain σ-ideals of sets in Banach spaces are separably determined. In the second article we do so for σ-porous sets and σ-lower porous sets. In the next article we refine these methods obtaining separable determination of a wide class of σ-ideals. In both cases we derive interesting corollaries which extend known theorems in separable spaces to the nonseparable setting; for example, we obtain the following theorem. Any continuous convex function on an Asplund space is Frchet differentiable outside a cone small set. In the fourth article we introduce the following notion. A closed set A ⊂ Rd is said to be c-removable if the following is true: Every real function on Rd is convex whenever it is continuous on Rd...