Racionální body na eliptických křivkách
Rational points on elliptic curves
bakalářská práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/71537Identifikátory
SIS: 143352
Katalog UK: 990017861300106986
Kolekce
- Kvalifikační práce [11981]
Autor
Vedoucí práce
Oponent práce
Šťovíček, Jan
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná matematika
Katedra / ústav / klinika
Katedra algebry
Datum obhajoby
25. 6. 2014
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Výborně
Klíčová slova (česky)
eliptická křivka, racionální body, rankKlíčová slova (anglicky)
elliptic curve, rational points, rankPráce se zabývá racionálními body na eliptických křivkách. Z Mordellovy věty víme, že grupa racionálních bodů na eliptické křivce je konečně generovaná. Nejdříve zkoumáme torzní část, která je popsána Nagell-Lutzovou větou, a poté přejdeme k volné části, pro jejíž popis zavádíme pojem ranku eliptické křivky. Práce je tvořena řešenými problémy a shrnutím potřebného teoretického základu. Najdeme body konečného řádu na daných křivkách a spočteme jejich rank. Powered by TCPDF (www.tcpdf.org)
This thesis concerns with rational points on elliptic curves. By the Mordell theorem we know that the group of rational points on elliptic curve is finitely generated. First, we study torsion subgroup, which turns out to be well described by theorem of Nagell-Lutz. Next, we focus on torsion-free part, which is characterized by the notion of rank. The thesis consists of solved problems and we also provide a summary of theoretical foundations. We find points of finite order on particular elliptic curves and compute their ranks. Powered by TCPDF (www.tcpdf.org)
