Využití tuhých elektrod na bázi uhlíku k elektrochemické oxidaci acikloviru
Utilization of carbon-based solid electrodes to electrochemical oxidation of acyclovir
diploma thesis (DEFENDED)

View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/70076Identifiers
Study Information System: 130187
CU Caralogue: 990018566600106986
Collections
- Kvalifikační práce [20889]
Author
Advisor
Consultant
Rychlovský, Petr
Referee
Fischer, Jan
Faculty / Institute
Faculty of Science
Discipline
Analytical Chemistry
Department
Department of Analytical Chemistry
Date of defense
9. 9. 2014
Publisher
Univerzita Karlova, Přírodovědecká fakultaLanguage
Czech
Grade
Very good
Keywords (Czech)
bórom dopovaná diamantová elektroda, elektroda ze skelného uhlíku, aciklovir, voltametrie, oxidaceKeywords (English)
boron-doped diamond electrode,glassy carbon electrode, acyclovir, voltammetry, oxidationElectrochemical oxidation of acyclovir at glassy-carbone electrode and boron-doped diamond electrode gives one pH-dependent oxidation signal; the corresponding electrode reaction is controlled by diffusion. It is followed by a second indistinctive signal in the pH range 2,0 - 9,0. Further, optimization of conditions was carried out for determination of acyclovir using DC and DP voltammetry. The calibration dependence on GC electrode in B−R buffer (pH = 6,0) is linear only in the concentration range from 2 to 10 μmol∙l−1 for DCV with limit of detection 0,38 μmol∙l−1; for DPV it is not linear. BDD electrode has to be activated to prevent its passivation. Anodic activation at +2,4 V for 15 s with simultaneous stirring of solution results in relative standard deviation of 0,9% for acyclovir concentration of 1∙10−4 mol∙l−1. Using DCV and DPV methods linear concentration dependences were obtained in 0,1 mol∙l-1 nitric acid and in pH 6,0 B−R buffer. The lowest limit of detection and limit of quantification (LOD = 0,47 μmol∙l−1 a LOQ = 1,55 μmol∙l−1) and linear range from 0,6 to 100 μmol∙l−1 was reached in pH 6,0 B−R buffer. Further, standard addition method was used to quantify acyclovir in Zovirax tablets. Satisfactory recoveries of 101,1 ± 2,3 % using DCV and 98,8 ± 2,2 % using DPV at BDD (compared with the...
Electrochemical oxidation of acyclovir at glassy-carbone electrode and boron-doped diamond electrode gives one pH-dependent oxidation signal; the corresponding electrode reaction is controlled by diffusion. It is followed by a second indistinctive signal in the pH range 2,0 - 9,0. Further, optimization of conditions was carried out for determination of acyclovir using DC and DP voltammetry. The calibration dependence on GC electrode in B−R buffer (pH = 6,0) is linear only in the concentration range from 2 to 10 μmol∙l−1 for DCV with limit of detection 0,38 μmol∙l−1; for DPV it is not linear. BDD electrode has to be activated to prevent its passivation. Anodic activation at +2,4 V for 15 s with simultaneous stirring of solution results in relative standard deviation of 0,9% for acyclovir concentration of 1∙10−4 mol∙l−1. Using DCV and DPV methods linear concentration dependences were obtained in 0,1 mol∙l-1 nitric acid and in pH 6,0 B−R buffer. The lowest limit of detection and limit of quantification (LOD = 0,47 μmol∙l−1 a LOQ = 1,55 μmol∙l−1) and linear range from 0,6 to 100 μmol∙l−1 was reached in pH 6,0 B−R buffer. Further, standard addition method was used to quantify acyclovir in Zovirax tablets. Satisfactory recoveries of 101,1 ± 2,3 % using DCV and 98,8 ± 2,2 % using DPV at BDD (compared with the...