dc.contributor.advisor | Kalenda, Ondřej | |
dc.creator | Rmoutil, Martin | |
dc.date.accessioned | 2018-11-30T13:24:02Z | |
dc.date.available | 2018-11-30T13:24:02Z | |
dc.date.issued | 2014 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/68990 | |
dc.description.abstract | Title: Exceptional Sets in Mathematical Analysis Author: Martin Rmoutil Department: Department of Mathematical Analysis Supervisor: Doc. RNDr. Ondřej Kalenda, Ph.D., DSc., Department of Mathematical Analysis Abstract: The present thesis consists of four research articles. In the first paper we study the notion of σ-lower porous set; our main result is the existence of two closed sets A, B ⊂ R which are not σ-lower porous, but their product in R2 is lower porous. In the second and third article we use a set-theoretical method of el- ementary submodels involving the Lwenheim-Skolem theorem to prove that certain σ-ideals of sets in Banach spaces are separably determined. In the second article we do so for σ-porous sets and σ-lower porous sets. In the next article we refine these methods obtaining separable determination of a wide class of σ-ideals. In both cases we derive interesting corollaries which extend known theorems in separable spaces to the nonseparable setting; for example, we obtain the following theorem. Any continuous convex function on an Asplund space is Frchet differentiable outside a cone small set. In the fourth article we introduce the following notion. A closed set A ⊂ Rd is said to be c-removable if the following is true: Every real function on Rd is convex whenever it is continuous on Rd... | en_US |
dc.description.abstract | Název práce: Výjimečné množiny v matematické analýze Autor: Martin Rmoutil Katedra: Katedra Matematické Analýzy Vedoucí disertační práce: Doc. RNDr. Ondřej Kalenda, Ph.D., DSc., Katedra matematické ana- lýzy Abstrakt: Tato práce sestává ze čtyř odborných článků. V prvním článku studujeme pojem σ-zdola pórovitých množin; hlavním výsled- kem je konstrukce uzavřených množin A, B ⊂ R, které nejsou σ-zdola pórovité a jejichž součin v R2 je zdola pórovitý. Ve druhém a třetím článku používáme množinově-teoretickou metodu založenou na Löwenheim-Skolemově větě (tzv. metodu elementárních submodelů) k důkazu separabilní determinovanosti jistých σ-ideálů množin v Bana- chových prostorech. Činíme tak nejprve pro pojmy σ-pórovitosti a σ- zdola pórovitosti (v článku druhém) a zjemněním použitých metod pak ve třetím článku dostaneme separabilní determinovanost dalších vlastností. V obou případech dostáváme zajímavé důsledky v podobě rozšíření vět známých pro separabilní prostory do kontextu nesepara- bilního; například: Libovolná spojitá konvexní funkce na Asplundově prostoru je fréchetovsky diferencovatelná ve všech bodech mimo ku- želově malou (cone small) množinu. Čtvrtý článek zavádí následující pojem. Řekneme, že uzavřená množina A ⊂ R je c-odstranitelná, jest- liže platí: Reálná funkce f je konvexní na Rd , kdykoliv... | cs_CZ |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | sigma-porous set | en_US |
dc.subject | elementary submodel | en_US |
dc.subject | Banach space | en_US |
dc.subject | c-removable set | en_US |
dc.subject | convex function | en_US |
dc.subject | sigma-pórovitá množina | cs_CZ |
dc.subject | elementární submodel | cs_CZ |
dc.subject | Banachův prostor | cs_CZ |
dc.subject | c-odstranitelná množina | cs_CZ |
dc.subject | konvexní funkce | cs_CZ |
dc.title | Exceptional Sets in Mathematical Analysis | en_US |
dc.type | dizertační práce | cs_CZ |
dcterms.created | 2014 | |
dcterms.dateAccepted | 2014-09-11 | |
dc.description.department | Katedra matematické analýzy | cs_CZ |
dc.description.department | Department of Mathematical Analysis | en_US |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 85280 | |
dc.title.translated | Výjimečné množiny v matematické analýze | cs_CZ |
dc.contributor.referee | Holický, Petr | |
dc.contributor.referee | Zindulka, Ondřej | |
dc.identifier.aleph | 001862588 | |
thesis.degree.name | Ph.D. | |
thesis.degree.level | doktorské | cs_CZ |
thesis.degree.discipline | Matematická analýza | cs_CZ |
thesis.degree.discipline | Mathematical Analysis | en_US |
thesis.degree.program | Mathematics | en_US |
thesis.degree.program | Matematika | cs_CZ |
uk.thesis.type | dizertační práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra matematické analýzy | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Mathematical Analysis | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Matematická analýza | cs_CZ |
uk.degree-discipline.en | Mathematical Analysis | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Prospěl/a | cs_CZ |
thesis.grade.en | Pass | en_US |
uk.abstract.cs | Název práce: Výjimečné množiny v matematické analýze Autor: Martin Rmoutil Katedra: Katedra Matematické Analýzy Vedoucí disertační práce: Doc. RNDr. Ondřej Kalenda, Ph.D., DSc., Katedra matematické ana- lýzy Abstrakt: Tato práce sestává ze čtyř odborných článků. V prvním článku studujeme pojem σ-zdola pórovitých množin; hlavním výsled- kem je konstrukce uzavřených množin A, B ⊂ R, které nejsou σ-zdola pórovité a jejichž součin v R2 je zdola pórovitý. Ve druhém a třetím článku používáme množinově-teoretickou metodu založenou na Löwenheim-Skolemově větě (tzv. metodu elementárních submodelů) k důkazu separabilní determinovanosti jistých σ-ideálů množin v Bana- chových prostorech. Činíme tak nejprve pro pojmy σ-pórovitosti a σ- zdola pórovitosti (v článku druhém) a zjemněním použitých metod pak ve třetím článku dostaneme separabilní determinovanost dalších vlastností. V obou případech dostáváme zajímavé důsledky v podobě rozšíření vět známých pro separabilní prostory do kontextu nesepara- bilního; například: Libovolná spojitá konvexní funkce na Asplundově prostoru je fréchetovsky diferencovatelná ve všech bodech mimo ku- želově malou (cone small) množinu. Čtvrtý článek zavádí následující pojem. Řekneme, že uzavřená množina A ⊂ R je c-odstranitelná, jest- liže platí: Reálná funkce f je konvexní na Rd , kdykoliv... | cs_CZ |
uk.abstract.en | Title: Exceptional Sets in Mathematical Analysis Author: Martin Rmoutil Department: Department of Mathematical Analysis Supervisor: Doc. RNDr. Ondřej Kalenda, Ph.D., DSc., Department of Mathematical Analysis Abstract: The present thesis consists of four research articles. In the first paper we study the notion of σ-lower porous set; our main result is the existence of two closed sets A, B ⊂ R which are not σ-lower porous, but their product in R2 is lower porous. In the second and third article we use a set-theoretical method of el- ementary submodels involving the Lwenheim-Skolem theorem to prove that certain σ-ideals of sets in Banach spaces are separably determined. In the second article we do so for σ-porous sets and σ-lower porous sets. In the next article we refine these methods obtaining separable determination of a wide class of σ-ideals. In both cases we derive interesting corollaries which extend known theorems in separable spaces to the nonseparable setting; for example, we obtain the following theorem. Any continuous convex function on an Asplund space is Frchet differentiable outside a cone small set. In the fourth article we introduce the following notion. A closed set A ⊂ Rd is said to be c-removable if the following is true: Every real function on Rd is convex whenever it is continuous on Rd... | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzy | cs_CZ |
thesis.grade.code | P | |
dc.identifier.lisID | 990018625880106986 | |