Modelling and Solving Problems Using SAT Techniques
Modelling and Solving Problems Using SAT Techniques
dissertation thesis (DEFENDED)
View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/63390Identifiers
Study Information System: 84536
Collections
- Kvalifikační práce [11242]
Author
Advisor
Consultant
Surynek, Pavel
Referee
Železný, Filip
Biere, Armin
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
Theoretical Computer Science
Department
Department of Theoretical Computer Science and Mathematical Logic
Date of defense
29. 9. 2014
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
English
Grade
Pass
Keywords (Czech)
Splnitelnost, Plánování, ModelováníKeywords (English)
Satisfiability, Planning, ModelingŘešení problémů plánování prostřednictvím překladů do splnitelnosti (SAT) je jedním z nejúspěšnějších přístupů k automatickému plánování. V této práci popíšeme několik způsobů jak přeložit problém plánování reprezentovaný v SAS+ formalismu do SAT. Přezkoumáme a přizpůsobíme stávající kódování a také zavedeme nové vlastní způsoby kódování. Porovnáme jednotlivá kódování pomocí výpočtu horních odhadů na velikosti formulí, které produkují, a pomocí spuštění rozsáhlých experimentů na referenčních problémech z Mezinárodní plánovací soutěže 2011. V experimentální části také porovnáme své kódování s nejmodernejšími kódováními z plánovače Madagascar. Experimenty ukazují, že naše techniky dokažou překonat tato kódování. V předložené práci také řešíme speciální případ optimalizace plánů -- odstranění redundantních akcí. Odstranění všech redundantních akcí je NP- úplný problém. Prostudujeme existující polynomialní heuristické přístupy a navrhneme vlastní heuristický přístup, který dokaže eliminovat vyšší počet a dražší redundantní akce než stávající techniky. Také navrhneme způsob kódování problému redundance plánů do SAT, který nám za použití MaxSAT řešičů umožní optimálně vyřešit problém eliminace redundantních akcí. Naše experimenty provedené s plány od nejmodernejších satisficing plánovačů pro referenční problémy...
Solving planning problems via translation to satisfiability (SAT) is one of the most successful approaches to automated planning. In this thesis we describe several ways of encoding a planning problem represented in the SAS+ formalism into SAT. We review and adapt existing encoding schemes as well as introduce new original encodings. We compare the encodings by calculating upper bounds on the size of the formulas they produce as well as by running extensive experiments on benchmark problems from the 2011 International Planning Competition (IPC). In the experimental section we also compare our encodings with the state-of-the-art encodings of the planner Madagascar. The experiments show, that our techniques can outperform these state-of-the-art encodings. In the presented thesis we also deal with a special case of post-planning optimization -- elimination of redundant actions. The elimination of all redundant actions is NP-complete. We review the existing polynomial heuristic approaches and propose our own heuristic approach which can eliminate a higher number and more costly redundant actions than the existing techniques. We also propose a SAT encoding for the problem of plan redundancy which together with MaxSAT solvers allows us to solve the problem of action elimination optimally. Experiments done with...