Analysis in Banach spaces
Analýza v Banachových prostorech
dissertation thesis (DEFENDED)

View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/63181Identifiers
Study Information System: 85386
Collections
- Kvalifikační práce [11322]
Author
Advisor
Referee
Johanis, Michal
Godefroy, Gilles
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
Mathematical Analysis
Department (external)
Information is unavailable
Date of defense
11. 9. 2014
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
English
Grade
Pass
Keywords (Czech)
Lipschitz-free prostory, aproximační vlastnost, Schauderova dekompozice, Schauderova báze, uniformně diferencovatelné zobrazeníKeywords (English)
Lipschitz-free spaces, approximation property, Schauder decomposition, Schauder basis, uniformly differentiable mappingsPráce sestává ze dvou článků a jednoho preprintu. Oba články se věnují aproximačním vlastnostem Lipschitz-free prostorů. V prvním článku dokážeme, že Lipschitz-free prostor na metrickém prostoru, který je doubling, má omezenou aproximační vlastnost. Speciálně, Lipschitz-free prostor na uzavřené podmnožině Rn má omezenou aproximační vlastnost. Také ukážeme, že Lipschitz-free pros- tory na ℓ1 a ℓn 1 mají monotonní konečně dimenzionální Schauderovu dekompozici. Ve druhém článku posouváme tuto práci dále a dostáváme dokonce Schauderovu bázi v Lipschitz-free prostorech na ℓ1 a ℓn 1 . Tématem preprintu je rigidita ℓ∞ a ℓn ∞ vzhledem k uniformně diferencovatelným zobrazením. Náš hlavní výsledek je nelineární analogií klasického výsledku od Rosenthala o rigiditě ℓ∞ vzhledem k lineárním operátorům, které nejsou slabě kompaktní, a zobecňuje větu o nekom- plementovanosti c0 v ℓ∞ od Phillipse. 1
The thesis consists of two papers and one preprint. The two papers are de- voted to the approximation properties of Lipschitz-free spaces. In the first pa- per we prove that the Lipschitz-free space over a doubling metric space has the bounded approximation property. In particular, the Lipschitz-free space over a closed subset of Rn has the bounded approximation property. We also show that the Lipschitz-free spaces over ℓ1 and over ℓn 1 admit a monotone finite-dimensional Schauder decomposition. In the second paper we improve this work and obtain even a Schauder basis in the Lipschitz-free spaces over ℓ1 and ℓn 1 . The topic of the preprint is rigidity of ℓ∞ and ℓn ∞ with respect to uniformly differentiable map- pings. Our main result is a non-linear analogy of the classical result on rigidity of ℓ∞ with respect to non-weakly compact linear operators by Rosenthal, and it generalises the theorem on non-complementability of c0 in ℓ∞ due to Phillips. 1