Neeuklidovská geometrie pro střední školy
Non-Euclidean geometry for secondary schools
bakalářská práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/61665Identifikátory
SIS: 136703
Kolekce
- Kvalifikační práce [18629]
Autor
Vedoucí práce
Oponent práce
Zhouf, Jaroslav
Fakulta / součást
Pedagogická fakulta
Obor
Matematika se zaměřením na vzdělávání
Katedra / ústav / klinika
Katedra matematiky a didaktiky matematiky
Datum obhajoby
4. 9. 2014
Nakladatel
Univerzita Karlova, Pedagogická fakultaJazyk
Čeština
Známka
Velmi dobře
Klíčová slova (česky)
Neeklidovská geometrie, Lobačevského geometrie, Euklidovská geometrieKlíčová slova (anglicky)
Non-Eulidean geometry, Geometry of Lobachevky, Euklid geometryCílem práce je vhodné zpracování tématu neeuklidovské geo- metrie pro střední školy. V práci je obsažen historický úvod, který popisuje cestu k objevu neeuklidovské geometrie. Úvod je zaměřen na neúspěšné dů- kazy pátého Euklidova postulátu, jakož i chybám, kterých se v nich matematici dopouštěli. Práce pokračuje seznamem vět, které jsou ekvivalentní s pátým po- stulátem a soustřeďuje se na různé způsoby rozdělení geometrie v literatuře, a upřesněním místa neeuklidovské geometrie v těchto rozděleních. Práce také demonstruje využití neeuklidovské geometrie v každodenním životě. Důleži- tou částí je zavádění prvotní představy o neeuklidovské geometrii za pomocí trojrozměrných modelů této geometrie. Práce má též přiblížit čtenáři jakými způsoby můžeme ke geometrii přistupovat, a jaké jsou jejich výhody a nevý- hody. Poslední část je věnovaná praktické práci s neeuklidovskou geometrií. Pro tento účel byl vybrán vhodný matematický model této geometrie, ve kte- rém se dá snadno pracovat i za pomoci matematických softwarů často využí- vaných při výuce na středních školách. Klíčová slova: neeklidovská geometrie, Lobačevského geometrie, euklidovská geometrie, 5. Euklidův axiom, Beltrami-Kleinův model 1
The aim is appropriate elaboration of the subject non-Euclidean geometry to high school. The work includes historical introduction that de- scribes the path to the discovery of non-Euclidean geometry. Introduction is focused on failed proof attempts of the fifth Euclidean postulate, as well as errors in them which mathematicians committed. Work continues with list of sentences that are equivalent to the fifth postulate and focuses on different ways of partitioning the geometry in the literature, and clarifying the place of non-Euclidean geometry in these distributions. The work also demonstra- tes the use of non-Euclidean geometry in everyday life. The important part is the introduction of the primary notion of non-Euclidean geometry using three-dimensional models of this geometry. Aim of thesis is to show the rea- der which ways we can use to approach geometry, what are the advantages and disadvantages of these methods. The last section is devoted to practical work with non-Euclidean geometry. For this purpose, appropriate mathemati- cal model of this geometry was chosen, easy to operate even with the help of mathematical software often used for teaching in high school. Keywords: Non-Euclidean geometry, geometry of Lobachevsky, Euclidean geometry, 5. axiom of Euclid, Beltrami-Klein model 1
Citace dokumentu
Metadata
Zobrazit celý záznamSouvisející záznamy
Zobrazují se záznamy příbuzné na základě názvu, autora a předmětu.
-
Synthetic projective geometry
Výsledek obhajoby: OBHÁJENOZamboj, Michal (Univerzita Karlova, Matematicko-fyzikální fakulta, 2018)Datum obhajoby: 19. 11. 2018V předložené práci podáváme syntetický pohled ke konstrukci, metodám a vy- braným výsledkům projektivní geometrie. Jsou okomentovány základní historické nedostatky originálního důkazu Chaslesovy věty pro nerozvinutelné ... -
Analytický a syntetický přístup k řešení metrických úloh v prostoru
Výsledek obhajoby: OBHÁJENOKreslová, Iva (Univerzita Karlova, Matematicko-fyzikální fakulta, 2019)Datum obhajoby: 6. 9. 2019The diploma thesis deals with metric tasks in space, using synthetic and analytical geometry. In addition to explaining the different approaches, there is a set of examples to practice. The solution of the examples is part ... -
Lobačevského geometrie
Výsledek obhajoby: OBHÁJENONeubauerová, Alžběta (Univerzita Karlova, Matematicko-fyzikální fakulta, 2023)Datum obhajoby: 14. 9. 2023Title: Lobachevskian geometry Author: Alžběta Neubauerová Department: The Department of Mathematics Education Supervisor: Mgr. Zdeněk Halas, DiS., Ph.D., The Department of Mathematics Education Abstract: The aim of this ...