Duhové aritmetické posloupnosti a extremální množiny v mřížkách
Rainbow arithmetic progressions and extremal subsets of lattices
bakalářská práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/56464Identifikátory
SIS: 130119
Katalog UK: 990016207660106986
Kolekce
- Kvalifikační práce [11985]
Autor
Vedoucí práce
Oponent práce
Pangrác, Ondřej
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná informatika
Katedra / ústav / klinika
Informatický ústav Univerzity Karlovy
Datum obhajoby
2. 9. 2013
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Velmi dobře
Klíčová slova (česky)
antiramsey, aritmetické posloupnosti, extremální kombinatorikaKlíčová slova (anglicky)
antiramsey, arithmetic progressions, extremalKdyž jsou čísla $1,\ldots,tn$ obarvena $t$ barvami (každá je užita $n$-krát), existuje mezi nimi duhová aritmetická posloupnost délky $k$. (Duhová aritmetická posloupnost je taková, která nemá žádné dva členy stejné barvy.) Toto platí pro $t>k^3$. Označme $T_k$ nejmenší takové $t$, pro které to platí. Hypotéza Jungiće a spol. říká, $T_k=O(k^2)$. Problém souvisí s extremálními problémy diskrétních hyperkrychlí. Představujeme metodu s mřížkami (diskrétní hyperkrychle, které mohou obsahovat nerozlišitelné prvky), která může vést k vylepšení odhadu $T_k$ až na $O(k^2\log k)$. V práci vyřešíme několik extremálních problémů v mřížkách, které mají důsledky v různých partiích matematiky. Například pomocí mřížek dokážeme hranovou isoperimetrickou nerovnost pro Hammingovu krychli, nalezneme bipartitní graf s maximálním součtem druhých mocnin stupňů a konvexní množinu $M\subseteq [0,b]\times[0,a]$ maximalizující funkci $G(M)=\int_{x=0}^a \lambda_1(M_x)^2+\int_{y=0}^b \lambda_1(M_y)^2$. Powered by TCPDF (www.tcpdf.org)
When numbers $1,\ldots,tn$ are colored with $t$ colors (each color is used $n$ times), there exists a rainbow arithmetic progression of length $k$ (rainbow progression is a progression whose terms are colored with pairwise distinct colors). This holds true for $t>k^3$. Let $T_k$ denote the smallest $t$ for which it applies. Jungic et al. conjectured $T_k=O(k^2)$. Problem relates to extremal problems in discrete hypercubes. We present a method which uses lattices (discrete hypercubes which can contain indistinguishable elements) which can lead to improving the upper bound of $T_k$ down to $O(k^2\log k)$. In this thesis, we solve several extremal problems in lattices which have corollaries in various branches of mathematics. For example, using lattices we solve edge isoperimetric inequality in Hammilton cube, we find a graph with maximal sum of squares of degrees and convex set $M\subseteq [0,b]\times[0,a]$ which maximizes function $G(M)=\int_{x=0}^a \lambda_1(M_x)^2+\int_{y=0}^b \lambda_1(M_y)^2$. Powered by TCPDF (www.tcpdf.org)
