Molekulárně-dynamické simulace membránových proteinů
Molecular dynamics simulations of membrane proteins
bakalářská práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/56058Identifikátory
SIS: 127303
Katalog UK: 990016234950106986
Kolekce
- Kvalifikační práce [11987]
Autor
Vedoucí práce
Oponent práce
Bok, Jiří
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná fyzika
Katedra / ústav / klinika
Fyzikální ústav UK
Datum obhajoby
12. 9. 2013
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Výborně
Klíčová slova (česky)
molekulární dynamika, membránové proteinyKlíčová slova (anglicky)
molecular dynamics, membrane proteinsV teoretické části předkládané práce byly zrekapitulovány základní poznatky o struktuře biomolekul a algoritmech uplatňovaných v tzv. molekulárnědynamických (MD) simulacích. Pro aktivní osvojení si základních algoritmů MD simulací byl vytvořen vlastní program pro simulace periodického boxu s molekulami vody reprezentovanými prostřednictvím různých modelů (SPC, TIPS, TIP3P). Metoda MD simulací byla následně aplikována na strukturu membránového proteinu A2AGPCR ukotveného ve fosfolipidické dvojvrstvě a obklopeného vodní obálkou (dohromady cca. 120.000 atomů). Smyslem těchto MD simulací bylo porovnat vazbu přirozeného agonisty adenosinu a jeho syntetického analogu NECA do vazebného místa na extracelulární straně A2AGPCR. Pro tyto MD simulace byl použit softwarový balík NAMD a výpočetní klastr Gram (jehož každý uzel je osazen 16 CPU jádry a 4 GPU) v superpočítačovém MetaCentru. Powered by TCPDF (www.tcpdf.org)
Basic facts about the structure of biomolecules and algorithms applied in molecular dynamics (MD) simulations were recapitulated in the theoretical part of this thesis. A program for MD simulations of a periodic box with water molecules represented by various models (SPC, TIPS, TIP3P) was developed for active mastery of basic algorithms applied in MD simulations. MD simulation methodology was subsequently applied to the structure of the membrane protein A2AGPCR anchored in the phospholipid bilayer and surrounded by water molecules (approx. 120,000 atoms altogether). The purpose of these MD simulations was to compare binding of the natural agonist (adenosine) and its synthetic analog NECA into the binding pocket situated on the extracellular side of A2AGPCR. For these MD simulations were used software package NAMD and computer cluster Gram (in which each node is equipped with 16 CPU cores and 4 GPU) in supercomputing MetaCentrum. Powered by TCPDF (www.tcpdf.org)
