dc.contributor.advisor | Pešta, Michal | |
dc.creator | Vichr, Jaroslav | |
dc.date.accessioned | 2017-05-16T07:10:07Z | |
dc.date.available | 2017-05-16T07:10:07Z | |
dc.date.issued | 2013 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/55456 | |
dc.description.abstract | EM (Expectation-Maximization) algoritmus je iterativní metoda sloužící k nalezení odhadu maximální věrohodnosti v případech, kdy buď data obsahují chybějící hodnoty, nebo předpokladem existence dalších skrytých proměnných může dojít ke zjednodušení modelu. Každá jeho iterace se skládá ze dvou částí. V kroku E (expectation) vytváříme očekávání logaritmované věrohodnosti úplných dat, která je podmíněna daty pozorovanými a také současným odhadem zkoumaného parametru. Krok M (maximization) následně hledá nový odhad, který bude maximalizovat funkci získanou v předchozí části a který se následně použije v další iteraci v kroku E. EM algoritmus má významné využití např. v oceňování a řízení rizik portfolia. | cs_CZ |
dc.description.abstract | EM (Expectation-Maximization) algorithm is an iterative method for finding maximum likelihood estimates in cases, when either complete data include missing values or assuming the existence of additional unobserved data points can lead to more simple formulation of the model. Each of its iterations consists of two parts. During the E step (expectation) we calculate the expected value of the log-likelihood function of the complete data, with respect to the observed data and the current estimate of the parameter. The M step (maximization) then finds new estimate, which will maximize the function obtained in the previous step and which will be used in the next iteration in step E. EM algorithm has important use in e.g. price and manage risk of the portfolio. | en_US |
dc.language | Čeština | cs_CZ |
dc.language.iso | cs_CZ | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | EM algoritmus | cs_CZ |
dc.subject | maximální věrohodnost | cs_CZ |
dc.subject | EM algorithm | en_US |
dc.subject | maximum likelihood | en_US |
dc.title | Expectation-Maximization Algoritmus | cs_CZ |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2013 | |
dcterms.dateAccepted | 2013-06-26 | |
dc.description.department | Department of Probability and Mathematical Statistics | en_US |
dc.description.department | Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 114194 | |
dc.title.translated | Expectation-Maximization Algorithm | en_US |
dc.contributor.referee | Zvára, Karel | |
dc.identifier.aleph | 001604747 | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | Financial Mathematics | en_US |
thesis.degree.discipline | Finanční matematika | cs_CZ |
thesis.degree.program | Matematika | cs_CZ |
thesis.degree.program | Mathematics | en_US |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Probability and Mathematical Statistics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Finanční matematika | cs_CZ |
uk.degree-discipline.en | Financial Mathematics | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | EM (Expectation-Maximization) algoritmus je iterativní metoda sloužící k nalezení odhadu maximální věrohodnosti v případech, kdy buď data obsahují chybějící hodnoty, nebo předpokladem existence dalších skrytých proměnných může dojít ke zjednodušení modelu. Každá jeho iterace se skládá ze dvou částí. V kroku E (expectation) vytváříme očekávání logaritmované věrohodnosti úplných dat, která je podmíněna daty pozorovanými a také současným odhadem zkoumaného parametru. Krok M (maximization) následně hledá nový odhad, který bude maximalizovat funkci získanou v předchozí části a který se následně použije v další iteraci v kroku E. EM algoritmus má významné využití např. v oceňování a řízení rizik portfolia. | cs_CZ |
uk.abstract.en | EM (Expectation-Maximization) algorithm is an iterative method for finding maximum likelihood estimates in cases, when either complete data include missing values or assuming the existence of additional unobserved data points can lead to more simple formulation of the model. Each of its iterations consists of two parts. During the E step (expectation) we calculate the expected value of the log-likelihood function of the complete data, with respect to the observed data and the current estimate of the parameter. The M step (maximization) then finds new estimate, which will maximize the function obtained in the previous step and which will be used in the next iteration in step E. EM algorithm has important use in e.g. price and manage risk of the portfolio. | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
dc.identifier.lisID | 990016047470106986 | |