Show simple item record

Expectation-Maximization Algorithm
dc.contributor.advisorPešta, Michal
dc.creatorVichr, Jaroslav
dc.date.accessioned2017-05-16T07:10:07Z
dc.date.available2017-05-16T07:10:07Z
dc.date.issued2013
dc.identifier.urihttp://hdl.handle.net/20.500.11956/55456
dc.description.abstractEM (Expectation-Maximization) algoritmus je iterativní metoda sloužící k nalezení odhadu maximální věrohodnosti v případech, kdy buď data obsahují chybějící hodnoty, nebo předpokladem existence dalších skrytých proměnných může dojít ke zjednodušení modelu. Každá jeho iterace se skládá ze dvou částí. V kroku E (expectation) vytváříme očekávání logaritmované věrohodnosti úplných dat, která je podmíněna daty pozorovanými a také současným odhadem zkoumaného parametru. Krok M (maximization) následně hledá nový odhad, který bude maximalizovat funkci získanou v předchozí části a který se následně použije v další iteraci v kroku E. EM algoritmus má významné využití např. v oceňování a řízení rizik portfolia.cs_CZ
dc.description.abstractEM (Expectation-Maximization) algorithm is an iterative method for finding maximum likelihood estimates in cases, when either complete data include missing values or assuming the existence of additional unobserved data points can lead to more simple formulation of the model. Each of its iterations consists of two parts. During the E step (expectation) we calculate the expected value of the log-likelihood function of the complete data, with respect to the observed data and the current estimate of the parameter. The M step (maximization) then finds new estimate, which will maximize the function obtained in the previous step and which will be used in the next iteration in step E. EM algorithm has important use in e.g. price and manage risk of the portfolio.en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectEM algoritmuscs_CZ
dc.subjectmaximální věrohodnostcs_CZ
dc.subjectEM algorithmen_US
dc.subjectmaximum likelihooden_US
dc.titleExpectation-Maximization Algoritmuscs_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2013
dcterms.dateAccepted2013-06-26
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId114194
dc.title.translatedExpectation-Maximization Algorithmen_US
dc.contributor.refereeZvára, Karel
dc.identifier.aleph001604747
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineFinancial Mathematicsen_US
thesis.degree.disciplineFinanční matematikacs_CZ
thesis.degree.programMatematikacs_CZ
thesis.degree.programMathematicsen_US
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csFinanční matematikacs_CZ
uk.degree-discipline.enFinancial Mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csEM (Expectation-Maximization) algoritmus je iterativní metoda sloužící k nalezení odhadu maximální věrohodnosti v případech, kdy buď data obsahují chybějící hodnoty, nebo předpokladem existence dalších skrytých proměnných může dojít ke zjednodušení modelu. Každá jeho iterace se skládá ze dvou částí. V kroku E (expectation) vytváříme očekávání logaritmované věrohodnosti úplných dat, která je podmíněna daty pozorovanými a také současným odhadem zkoumaného parametru. Krok M (maximization) následně hledá nový odhad, který bude maximalizovat funkci získanou v předchozí části a který se následně použije v další iteraci v kroku E. EM algoritmus má významné využití např. v oceňování a řízení rizik portfolia.cs_CZ
uk.abstract.enEM (Expectation-Maximization) algorithm is an iterative method for finding maximum likelihood estimates in cases, when either complete data include missing values or assuming the existence of additional unobserved data points can lead to more simple formulation of the model. Each of its iterations consists of two parts. During the E step (expectation) we calculate the expected value of the log-likelihood function of the complete data, with respect to the observed data and the current estimate of the parameter. The M step (maximization) then finds new estimate, which will maximize the function obtained in the previous step and which will be used in the next iteration in step E. EM algorithm has important use in e.g. price and manage risk of the portfolio.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ
dc.identifier.lisID990016047470106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV