Nekomutativni Choquetova teorie
Noncommutative Choquet theory
Nekomutativni Choquetova teorie
diplomová práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/49627Identifikátory
SIS: 53351
Katalog UK: 990013848990106986
Kolekce
- Kvalifikační práce [11985]
Autor
Vedoucí práce
Oponent práce
Hamhalter, Jan
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Matematická analýza
Katedra / ústav / klinika
Katedra matematické analýzy
Datum obhajoby
8. 9. 2011
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Slovenština
Známka
Velmi dobře
Klíčová slova (česky)
hraničná reprezentácia, úplne pozitívne zobrazenie, vlastnosť jednoznačného rozšírenia, štandardný hilbertovský zväzok, merateľný systém zobrazeníKlíčová slova (anglicky)
boundary representation, completely positive map, unique extension property, standard Hilbert bundle, measurable family of maps- ABSTRAKT - Nekomutatívna Choquetova teória Nech M je lineárny podpriestor komutatívnej C∗ -algebry C(X), ktorý oddeľuje jej body a obsahuje jednotku. Potom uzáver Choquetovej hra- nice pre M je Šilova hranica vzhľadom k M. V prípade nekomutatívnej C∗ -algebry A s jednotkou uvažujme S ako samoadjungovaný lineárny podprietor A, ktorý obsahuje jednotku a generuje A. Budeme hovoriť, že S je operátorový systém. Potom nekomutatívnou formuláciou uve- deného tvrdenia je výrok, že prienik všetkých hraničných reprezentácií vzhľadom k S je Šilov ideál pre S. K tomu stačí ukázať, že S má dosta- točne mnoho hraničných reprezentácií. V predloženej práci smerujeme k dôkazu, že toto platí pre separabilný operátorový systém.
- ABSTRACT - Noncommutative Choquet theory Let S be a linear subspace of a commutative C∗ -algebra C(X) that se- parates points of C(X) and contains identity. Then the closure of the Choquet boundary of the function system S is the Šilov boundary relati- ve to S. In the case of a noncommutative unital C∗ -algebra A, consider S a self-adjoint linear subspace of A that contains identity and generates A. Let us call S operator system. Then the noncommutative formulation of the stated assertion is that the intersection of all boundary representa- tions for S is the Šilov ideal for S. To that end it is sufficient to show that S has sufficiently many boundary representations. In the present work we make for the proof of that this holds for separable operator system.
