Statistická analýza intervalových dat
Statistical analysis of interval data
diploma thesis (DEFENDED)

View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/49470Identifiers
Study Information System: 47742
CU Caralogue: 990013865980106986
Collections
- Kvalifikační práce [11335]
Author
Advisor
Referee
Branda, Martin
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
Financial and insurance mathematics
Department
Department of Probability and Mathematical Statistics
Date of defense
14. 9. 2011
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
Czech
Grade
Excellent
Keywords (Czech)
intervalová data, střední hodnota, rozptyl, kovariance, korelace, intervalová neurčitost, výpočetní složitostKeywords (English)
interval data, mean, variance, covariance, correlation, interval uncer- tainty, computational complexityTradiční statistická analýza začíná výpočtem základních statistických charakteristik jako je výběrová střední hodnota E, výběrový rozptyl V , kovariance či korelace. Při výpočtu těchto charakteristik se většinou předpokládá, že odpo- vídající hodnoty dat jsou přesně známé. Ve skutečnem světě existují situace, kdy je možné získat více vypovídající informace tím, že soubor statistických dat bude intervalového typu. Například, naměřená denní maximální a minimální teplota dává realističtější pohled na počasí než obyčejné průměrné hodnoty. Při analýze životního prostředí dostáváme naměřené hodnoty znečištění jezera x(t) v různých časových okamžicích t, přičemž bychom potřebovali odhadnout statistické charak- teristiky jako je střední hodnota, rozptyl nebo korelace s jinými měřeními. Jiný příklad je z finančního prostředí. Minimum a maximum cen transakcí, denně za- znamenané pro nějaký soubor akcií poskytuje víc relevantních údajů pro finanční experty, kteří vyhodnocují akcie a volatilitu ve stejný den. Pro tyto a mnohé další případy musíme modifikovat existující statistické postupy, abychom je mohli apli- kovat na data intervalového typu. V této práci se pokusíme rozebrat statistické algoritmy, jejich složitost a modifikace vhodné pro aplikaci na intervalová data v případě výpočtu střední hodnoty,...
Traditional statistical analysis starts with computing the basic statisti- cal characteristics such as the population mean E, population variance V , cova- riance and correlation. In computing these characteristics, it is usually assumed that the corresponding data values are known exactly. In real life there are many situations in which a more complete information can be achieved by describing a set of statistical units in terms of interval data. For example, daily tempera- tures registered as minimum and maximum values offer a more realistic view on the weather conditions variations with respect to the simple average values. In environmental analysis, we observe a pollution level x(t) in a lake at different mo- ments of time t, and we would like to estimate standard statistical characteristics such as mean, variance and correlation with other measurements. Another exam- ple can be given by financial series. The minimum and the maximum transaction prices recorded daily for a set of stocks represent a more relevant information for experts in order to evaluate the stocks tendency and volatility in the same day. We must therefore modify the existing statistical algorithms to process such interval data. In this work we will analyze algorithms and their modifications for computing various statistics under...