Modelování úrokových sazeb na finančních trzích
Moddeling of interest rates at the financial markets
dissertation thesis (DEFENDED)

View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/47901Identifiers
Study Information System: 44019
Collections
- Kvalifikační práce [10371]
Author
Advisor
Consultant
Laušmanová, Monika
Referee
Vejmělek, Jan
Keprta, Stanislav
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
Financial and Insurance Mathematics
Department
Department of Probability and Mathematical Statistics
Date of defense
19. 4. 2012
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
Czech
Grade
Pass
Tradiční Monte Carlo metody pro výpočet rizikových veličin (zejména VaR a TVaR) využívají pro modelování jednotlivých rizikových faktorů velice zjednodušené modely stochas- tických diferenciálních rovnic, kdy driftová a difuzní funkce obsahují většinou jen jeden nebo dva parametry. Takový přístup přirozeně snižuje přesnost konečného výsledku a může významně podhodnotit riziko daného portfolia. V této práci se použitím aparátu neparametrické statis- tiky zaměříme na konstrukci takového modelu pro popis rizikovosti portfolia, který opět před- pokládá, že vývoj rizikových faktorů je popsán stochastickou diferenciální rovnicí, avšak klade minimální požadavky na funkce driftu a difůze a mnohem lépe tak zohledňuje informace obsa- žené v historických pozorováních. Klíčová slova: náhodný proces, neparametrické odhady, drift, difúze, lokální čas, VaR, TVaR
Traditional Monte Carlo methods for a calculation of risk quantities (mainly VaR and TVaR) use for modeling of individual risk factors very simplified models of stochastic differential equations, where the drift and diffusion functions contain usually only one or two parameters. Such approach naturally reduces the accuracy of the final result and may significantly underestimate the risk of the portfolio. In this paper we focus on the construction of a portfolio risk model that uses nonparametric statistics theory. We shall assume the development of risk factors (specifically interest rate curve) is described by stochastic differential equation, but set minimum requirements for the drift and diffusion functions and thus better reflect the information contained in historical observations. Keywords: stochastic process, nonparametric estimation, diffusion, drift, local time, VaR, TVaR