Show simple item record

Analýza akciových trhů s využitím nové geneticky žíhané neuronové sítě
dc.contributor.advisorBaruník, Jozef
dc.creatorVerner, Robert
dc.date.accessioned2020-02-14T13:06:05Z
dc.date.available2020-02-14T13:06:05Z
dc.date.issued2012
dc.identifier.urihttp://hdl.handle.net/20.500.11956/44769
dc.description.abstractThe presented rigorosis thesis is focused on the stock markets returns analysis using a new type of neural network. First chapter of the thesis describes the underlying theory of the financial time series prediction, Efficient Market Hypothesis and conventional forecasting models. Following part illustrates biological framework, basic principles, functioning of neural networks, their architecture and several well-known learning algorithms such as Gradient descent, Levenberg-Marquardt algorithm or Conjugate gradient. It also mentions certain disadvantages which influence the performance and effectiveness of neural networks. Third chapter is devoted to two applied metaheuristic techniques, i.e. genetic algorithms and simulated annealing that were integrated into neural networks framework to eliminate above mentioned drawbacks. Next chapter describes details of presented hybrid network, whereas the last section is aimed at evaluation of overall results of all models. It shows that on the examined sample hybrid network clearly outperformed standard techniques as well as ordinary neural networks and in most cases achieved the least mean squared error among all explored methods. Keywords: stock returns analysis, neural networks, genetic algorithms, simulated annealing, hybrid networks JEL classification:...en_US
dc.description.abstractPredložená rigorózna práca je zameraná na analýzu výnosov akciových trhov s využitím nového typu neurónovej siete. V prvej kapitole sú popísané teoretické základy predikcie finančných časových rád, Hypotézy efektívnych trhov a štandardne používané predpovedné modely. Nasledovná časť približuje biologickú podstatu, základné princípy a fungovanie neurónových sietí, ich architektúru a niekoľko najznámejších učebných algoritmov ako Sklon gradientu, Levenberg-Marquardtov algoritmus či Konjugovaný gradient. Rovnako zmieňuje určité nevýhody, ktoré ovplyvňujú výkonnosť a efektivitu neurónových sietí. Tretia kapitola je venovaná dvom použitým metaheuristickým metódam, t.j. genetickým algoritmom a simulovanému žíhaniu, ktoré boli integrované do prostredia neurónových sietí na odstránenie zmienených nedostatkov. Ďalšia kapitola ilustruje detaily predstavenej hybridnej siete, zatiaľ čo posledná časť je sústredená na ohodnotenie celkových výsledkov jednotlivých modelov. Ukazuje, že vytvorená hybridná sieť na pozorovanej vzorke jasne prekonala bežné modely i klasické neurónové siete a vo väčšine prípadov dosahuje najmenšiu strednú štorcovú chybu spomedzi všetkých testovaných metód. Kľúčové slová: analýza akciových výnosov, neurónové siete, genetické algoritmy, simulované žíhanie, hybridné siete JEL klasifikácia:...cs_CZ
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Fakulta sociálních vědcs_CZ
dc.subjectstock returns analysisen_US
dc.subjectneural networksen_US
dc.subjectgenetic algorithmsen_US
dc.subjectsimulated annealingen_US
dc.subjecthybrid networksen_US
dc.subjectanalýza akciových výnosovcs_CZ
dc.subjectneurónové sietecs_CZ
dc.subjectgenetické algoritmycs_CZ
dc.subjectsimulované žíhaniecs_CZ
dc.subjecthybridné sietecs_CZ
dc.titleStock Markets Analysis Using New Genetic Annealed Neural Networken_US
dc.typerigorózní prácecs_CZ
dcterms.created2012
dcterms.dateAccepted2012-03-21
dc.description.departmentInstitut ekonomických studiícs_CZ
dc.description.departmentInstitute of Economic Studiesen_US
dc.description.facultyFaculty of Social Sciencesen_US
dc.description.facultyFakulta sociálních vědcs_CZ
dc.identifier.repId120513
dc.title.translatedAnalýza akciových trhů s využitím nové geneticky žíhané neuronové sítěcs_CZ
dc.contributor.refereeVošvrda, Miloslav
dc.identifier.aleph001449000
thesis.degree.namePhDr.
thesis.degree.levelrigorózní řízenícs_CZ
thesis.degree.disciplineEkonomiecs_CZ
thesis.degree.disciplineEconomicsen_US
thesis.degree.programEkonomické teoriecs_CZ
thesis.degree.programEconomicsen_US
uk.thesis.typerigorózní prácecs_CZ
uk.taxonomy.organization-csFakulta sociálních věd::Institut ekonomických studiícs_CZ
uk.taxonomy.organization-enFaculty of Social Sciences::Institute of Economic Studiesen_US
uk.faculty-name.csFakulta sociálních vědcs_CZ
uk.faculty-name.enFaculty of Social Sciencesen_US
uk.faculty-abbr.csFSVcs_CZ
uk.degree-discipline.csEkonomiecs_CZ
uk.degree-discipline.enEconomicsen_US
uk.degree-program.csEkonomické teoriecs_CZ
uk.degree-program.enEconomicsen_US
thesis.grade.csProspěl/acs_CZ
thesis.grade.enPassen_US
uk.abstract.csPredložená rigorózna práca je zameraná na analýzu výnosov akciových trhov s využitím nového typu neurónovej siete. V prvej kapitole sú popísané teoretické základy predikcie finančných časových rád, Hypotézy efektívnych trhov a štandardne používané predpovedné modely. Nasledovná časť približuje biologickú podstatu, základné princípy a fungovanie neurónových sietí, ich architektúru a niekoľko najznámejších učebných algoritmov ako Sklon gradientu, Levenberg-Marquardtov algoritmus či Konjugovaný gradient. Rovnako zmieňuje určité nevýhody, ktoré ovplyvňujú výkonnosť a efektivitu neurónových sietí. Tretia kapitola je venovaná dvom použitým metaheuristickým metódam, t.j. genetickým algoritmom a simulovanému žíhaniu, ktoré boli integrované do prostredia neurónových sietí na odstránenie zmienených nedostatkov. Ďalšia kapitola ilustruje detaily predstavenej hybridnej siete, zatiaľ čo posledná časť je sústredená na ohodnotenie celkových výsledkov jednotlivých modelov. Ukazuje, že vytvorená hybridná sieť na pozorovanej vzorke jasne prekonala bežné modely i klasické neurónové siete a vo väčšine prípadov dosahuje najmenšiu strednú štorcovú chybu spomedzi všetkých testovaných metód. Kľúčové slová: analýza akciových výnosov, neurónové siete, genetické algoritmy, simulované žíhanie, hybridné siete JEL klasifikácia:...cs_CZ
uk.abstract.enThe presented rigorosis thesis is focused on the stock markets returns analysis using a new type of neural network. First chapter of the thesis describes the underlying theory of the financial time series prediction, Efficient Market Hypothesis and conventional forecasting models. Following part illustrates biological framework, basic principles, functioning of neural networks, their architecture and several well-known learning algorithms such as Gradient descent, Levenberg-Marquardt algorithm or Conjugate gradient. It also mentions certain disadvantages which influence the performance and effectiveness of neural networks. Third chapter is devoted to two applied metaheuristic techniques, i.e. genetic algorithms and simulated annealing that were integrated into neural networks framework to eliminate above mentioned drawbacks. Next chapter describes details of presented hybrid network, whereas the last section is aimed at evaluation of overall results of all models. It shows that on the examined sample hybrid network clearly outperformed standard techniques as well as ordinary neural networks and in most cases achieved the least mean squared error among all explored methods. Keywords: stock returns analysis, neural networks, genetic algorithms, simulated annealing, hybrid networks JEL classification:...en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Fakulta sociálních věd, Institut ekonomických studiícs_CZ
thesis.grade.codeP
uk.publication-placePrahacs_CZ
dc.identifier.lisID990014490000106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV