dc.contributor.advisor | Valtr, Pavel | |
dc.creator | Slabý, David | |
dc.date.accessioned | 2017-05-07T01:51:35Z | |
dc.date.available | 2017-05-07T01:51:35Z | |
dc.date.issued | 2012 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/41588 | |
dc.description.abstract | Dva hráči se střídají v umisťování jednotkových čtverečků na obdélníkovou hrací plochu, bez otáčení, jinak mohou být umístěny libovolně. Čtverečky se nesmí překrývat a hra končí, když už se nedá umístit další. Výsledkem hry je počet tahů. Konstruktor se snaží tento výsledek maximalizovat a destruktor minimalizovat. Cílem této práce je co nejpřesněji určit výsledek hry za předpokladu, že oba hráči použijí optimální strategii. Zde dokážeme nové odhady výsledku hry. Tato práce rozšiřuje výsledky popsané v článku Competitive rectangle filling, jehož autorem je Tamás Hubai. Dále se zabýváme jinými tvary hracích ploch a pokládaných tvarů. | cs_CZ |
dc.description.abstract | Two players take alternating turns filling a rectangular board with unit squares without rotation, but may be otherwise arbitrary. Squares may not overlap and the game ends when there is no space for the next one. The result of the game is the number of turns. The constructor aims to maximize this quantity while the destructor wants to minimize it. We would like to get close to this value, provided that both players use their optimal strategy. We prove some new lower and upper bound for the game. This thesis extends results given by Tamás Hubai in his paper Competitive rectangle filling. Furthermore, we have a look at other board shapes and shapes to fill with. | en_US |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | geometrická hra | cs_CZ |
dc.subject | čtverec | cs_CZ |
dc.subject | obdélník | cs_CZ |
dc.subject | konstruktor | cs_CZ |
dc.subject | destruktor | cs_CZ |
dc.subject | geometric game | en_US |
dc.subject | square | en_US |
dc.subject | rectangle | en_US |
dc.subject | constructor | en_US |
dc.subject | destructor | en_US |
dc.title | Competitive filling of a plane region | en_US |
dc.type | diplomová práce | cs_CZ |
dcterms.created | 2012 | |
dcterms.dateAccepted | 2012-05-14 | |
dc.description.department | Department of Applied Mathematics | en_US |
dc.description.department | Katedra aplikované matematiky | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 113995 | |
dc.title.translated | Competitive filling of a plane region | cs_CZ |
dc.contributor.referee | Valla, Tomáš | |
dc.identifier.aleph | 001465131 | |
thesis.degree.name | Mgr. | |
thesis.degree.level | navazující magisterské | cs_CZ |
thesis.degree.discipline | Discrete Models and Algorithms | en_US |
thesis.degree.discipline | Diskrétní modely a algoritmy | cs_CZ |
thesis.degree.program | Computer Science | en_US |
thesis.degree.program | Informatika | cs_CZ |
uk.thesis.type | diplomová práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra aplikované matematiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Applied Mathematics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Diskrétní modely a algoritmy | cs_CZ |
uk.degree-discipline.en | Discrete Models and Algorithms | en_US |
uk.degree-program.cs | Informatika | cs_CZ |
uk.degree-program.en | Computer Science | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | Dva hráči se střídají v umisťování jednotkových čtverečků na obdélníkovou hrací plochu, bez otáčení, jinak mohou být umístěny libovolně. Čtverečky se nesmí překrývat a hra končí, když už se nedá umístit další. Výsledkem hry je počet tahů. Konstruktor se snaží tento výsledek maximalizovat a destruktor minimalizovat. Cílem této práce je co nejpřesněji určit výsledek hry za předpokladu, že oba hráči použijí optimální strategii. Zde dokážeme nové odhady výsledku hry. Tato práce rozšiřuje výsledky popsané v článku Competitive rectangle filling, jehož autorem je Tamás Hubai. Dále se zabýváme jinými tvary hracích ploch a pokládaných tvarů. | cs_CZ |
uk.abstract.en | Two players take alternating turns filling a rectangular board with unit squares without rotation, but may be otherwise arbitrary. Squares may not overlap and the game ends when there is no space for the next one. The result of the game is the number of turns. The constructor aims to maximize this quantity while the destructor wants to minimize it. We would like to get close to this value, provided that both players use their optimal strategy. We prove some new lower and upper bound for the game. This thesis extends results given by Tamás Hubai in his paper Competitive rectangle filling. Furthermore, we have a look at other board shapes and shapes to fill with. | en_US |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra aplikované matematiky | cs_CZ |
dc.identifier.lisID | 990014651310106986 | |