Show simple item record

Kombinatorika matematických struktur
dc.contributor.advisorKrajíček, Jan
dc.creatorPaták, Pavel
dc.date.accessioned2017-04-27T05:09:30Z
dc.date.available2017-04-27T05:09:30Z
dc.date.issued2010
dc.identifier.urihttp://hdl.handle.net/20.500.11956/34475
dc.description.abstractKombinatorika matematické struktury prvního řádu je třída všech formulí, které platí ve všech strukturách v ní definovatelných. Tento pojem poprvé zavedl Krajíček v [6]. V předložené práci se zabýváme charakterizací a srovnáním kombinatorik známých matematických struktur (reálná a komplexní čísla, husté lineární uspořádání, ...). Dále se věnujeme otázce výpočetní složitosti, tj. otázce, jak těžké je zjistit, zda daná formule leží v kombinatorice dané struktury. Dokážeme, že v případě modelů úplných teorií bez vlastnosti striktního uspořádání (SOP) či v případě pseudokonečných struktur je tento problém korekurzivně spočetně úplný a tudíž algoritmicky neřešitelný.cs_CZ
dc.description.abstractThe combinatorics of a first order mathematical structure is the class of all formulas valid in all in it definable structures. This notion was first introduced by Kraj'ček in [6]. In the present work we try to characterize and compare the combinatorics of several different prominent structures (reals, complex number, dense linear order, . . . ). We also study the question of algorithmical complexity, i.e. the question how hard it is to check whether a given formula lies in the combinatorics of a given structure. We prove that this question is corecursively enumeratively complete and therefore algorithmicaly undecidable in the case of models of complete theories without strict order property (SOP) and in the case of pseudofinite structures.en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleKombinatorika matematických strukturen_US
dc.typediplomová prácecs_CZ
dcterms.created2010
dcterms.dateAccepted2010-09-16
dc.description.departmentDepartment of Algebraen_US
dc.description.departmentKatedra algebrycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId70656
dc.title.translatedKombinatorika matematických strukturcs_CZ
dc.contributor.refereeThapen, Neil
dc.identifier.aleph001393870
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineMathematical structuresen_US
thesis.degree.disciplineMatematické strukturycs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematické strukturycs_CZ
uk.degree-discipline.enMathematical structuresen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csKombinatorika matematické struktury prvního řádu je třída všech formulí, které platí ve všech strukturách v ní definovatelných. Tento pojem poprvé zavedl Krajíček v [6]. V předložené práci se zabýváme charakterizací a srovnáním kombinatorik známých matematických struktur (reálná a komplexní čísla, husté lineární uspořádání, ...). Dále se věnujeme otázce výpočetní složitosti, tj. otázce, jak těžké je zjistit, zda daná formule leží v kombinatorice dané struktury. Dokážeme, že v případě modelů úplných teorií bez vlastnosti striktního uspořádání (SOP) či v případě pseudokonečných struktur je tento problém korekurzivně spočetně úplný a tudíž algoritmicky neřešitelný.cs_CZ
uk.abstract.enThe combinatorics of a first order mathematical structure is the class of all formulas valid in all in it definable structures. This notion was first introduced by Kraj'ček in [6]. In the present work we try to characterize and compare the combinatorics of several different prominent structures (reals, complex number, dense linear order, . . . ). We also study the question of algorithmical complexity, i.e. the question how hard it is to check whether a given formula lies in the combinatorics of a given structure. We prove that this question is corecursively enumeratively complete and therefore algorithmicaly undecidable in the case of models of complete theories without strict order property (SOP) and in the case of pseudofinite structures.en_US
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra algebrycs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 3-5, 116 36 Praha; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV