dc.contributor.advisor | Klazar, Martin | |
dc.creator | Hančl, Jaroslav | |
dc.date.accessioned | 2017-04-20T17:32:25Z | |
dc.date.available | 2017-04-20T17:32:25Z | |
dc.date.issued | 2009 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/27839 | |
dc.description.abstract | V předložené shrnující práci studujeme takzvaný inverzní problém aditivní teorie čísel. Snažíme se tedy charakterizovat množiny A přirozených čísel, víme-li nějaké informace o jejich násobcích 2A = A + A. Zpočátku se budeme věnovat konečným množinám s vlastností |2A| = 2|A| - 1, dále si ukážeme zobecnění pro takové abelovské grupy G, v nichž má každý prvek řad omezenýy konstantou r, a jejich podmnožiny A splňující |2A| - c|A|. Nakonec se dostaneme až k slavné Freimanově větě, která popisuje množiny přirozených čísel A, jež jsou malé ve smyslu |2A| - c|A|. Tuto větu dokážeme a uvedeme některé její důsledky a aplikace. | cs_CZ |
dc.description.abstract | In the presented summary work we study the inverse problem in additive number theory. More speci cally, we try to characterize sets A of positive integers if we know some information about their sumsets 2A = A + A. At the beginning we devote some time to nite sets with the property |2A| = 2|Aj| - 1, then we solve a generalized problem for such abelian groups G in whose order of all elements is bounded by a constant rand their subsets A satisfying j2Aj cjAj. At the end we present the famous Freiman theorem, which describes sets of positive integers A small in the sense |2A| - c|A|. We prove this theorem and give some corollaries and applications. | en_US |
dc.language | Čeština | cs_CZ |
dc.language.iso | cs_CZ | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.title | Freimanova věta v aditivní kombinatorice | cs_CZ |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2009 | |
dcterms.dateAccepted | 2009-06-22 | |
dc.description.department | Department of Applied Mathematics | en_US |
dc.description.department | Katedra aplikované matematiky | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 65445 | |
dc.title.translated | Freiman's theorem in additive combinatorics | en_US |
dc.contributor.referee | Nešetřil, Jaroslav | |
dc.identifier.aleph | 001119200 | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | Obecná matematika | cs_CZ |
thesis.degree.discipline | General Mathematics | en_US |
thesis.degree.program | Matematika | cs_CZ |
thesis.degree.program | Mathematics | en_US |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra aplikované matematiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Applied Mathematics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Obecná matematika | cs_CZ |
uk.degree-discipline.en | General Mathematics | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | V předložené shrnující práci studujeme takzvaný inverzní problém aditivní teorie čísel. Snažíme se tedy charakterizovat množiny A přirozených čísel, víme-li nějaké informace o jejich násobcích 2A = A + A. Zpočátku se budeme věnovat konečným množinám s vlastností |2A| = 2|A| - 1, dále si ukážeme zobecnění pro takové abelovské grupy G, v nichž má každý prvek řad omezenýy konstantou r, a jejich podmnožiny A splňující |2A| - c|A|. Nakonec se dostaneme až k slavné Freimanově větě, která popisuje množiny přirozených čísel A, jež jsou malé ve smyslu |2A| - c|A|. Tuto větu dokážeme a uvedeme některé její důsledky a aplikace. | cs_CZ |
uk.abstract.en | In the presented summary work we study the inverse problem in additive number theory. More speci cally, we try to characterize sets A of positive integers if we know some information about their sumsets 2A = A + A. At the beginning we devote some time to nite sets with the property |2A| = 2|Aj| - 1, then we solve a generalized problem for such abelian groups G in whose order of all elements is bounded by a constant rand their subsets A satisfying j2Aj cjAj. At the end we present the famous Freiman theorem, which describes sets of positive integers A small in the sense |2A| - c|A|. We prove this theorem and give some corollaries and applications. | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra aplikované matematiky | cs_CZ |
dc.identifier.lisID | 990011192000106986 | |