Essays on Data-driven, Non-parametric Modelling of Time-series
Eseje o neparametrickém a datech řízeném modelování časových řad
dissertation thesis (DEFENDED)
View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/188754Identifiers
Study Information System: 158778
Collections
- Kvalifikační práce [18180]
Author
Advisor
Referee
Witzany, Jiří
Ellington, Michael
Trimborn, Simon
Faculty / Institute
Faculty of Social Sciences
Discipline
Economics and Finance
Department
Institute of Economic Studies
Date of defense
13. 3. 2024
Publisher
Univerzita Karlova, Fakulta sociálních vědLanguage
English
Grade
Pass
Keywords (Czech)
Neparametrické, daty řízené, časové řady, proměnné v čase, neuronové sítě, frekvenční doména, hospodářské cykly, předpovídání, distribuceKeywords (English)
Non-parametric, Data-driven, Time-series, Time-variying, Neural networks, Frequency domain, Business cycles, Forecasting, DistributionTato dizertační práce se skládá ze čtyř článků přispívající k literatuře o datově řízeném a neparametrickém modelování časových řad. V prvním příspěvku studujeme synchronizaci hospodářských cyklů a navrhujeme vícerozměr- nou míru sladěnosti založenou na časové frekvenční kohezi. Naznačujeme, že ekonomická integrace může vést k vyšší sladěnosti hospodářských cyklů, což může odrážet výhody konvergence a koordinace hospodářských poli- tik. Druhý článek představuje novou metodiku pro identifikaci perzistence makroekonomických proměnných. Pomocí časově proměnných funkcí frek- venční odezvy identifikujeme heterogenní efekty perzistence v makroekono- mických proměnných USA. Třetí a čtvrtý článek navrhují metody založené na datech pro předpovídání distribucí časových řad s využitím strojového učení. Zavádíme vícevýstupovou neuronovou síť, která pro data vybírá nej- vhodnější rozdělení. Distribuční neuronová síť je přínosná pro modelování dat s nelineární, negaussovskou a asymetrickou strukturou. Třetí článek de- monstruje užitečnost této metody k odhadu informačně bohatých makroeko- nomických vějířových grafů a pravděpodobnostních předpovědí výnosů ak- cií. V posledním článku představujeme distribuční neuronovou síť k získání pravděpodobnostního rozdělení předpovědí cen elektřiny. Předpovídáme hodinové ceny...
This thesis consists of four contributions to the literature on data-driven and non-parametric modelling of time series. In the first paper, we study the synchronisation of business cycles and propose a multivariate co-movement measure based on time-frequency cohesion. We suggest that economic inte- gration may lead to increased co-movement of business cycles, which may reflect the benefits of convergence and coordination of economic policies. The second paper presents a new methodology for identifying persistence in macroeconomic variables. Using time-varying frequency response func- tions, we identify heterogeneous persistence effects in US macroeconomic variables. The third and fourth papers propose data-driven techniques for probabilistic forecasting of time series using deep learning. We introduce a multi-output neural network that selects the most appropriate distribution for the data. The distributional neural network is valuable for modelling data with non-linear, non-Gaussian and asymmetric structures. The third paper demonstrates the usefulness of the method by estimating information-rich macroeconomic fan charts and distributional forecasts of asset returns. In the last paper, we present the distributional neural network to obtain the proba- bility distribution of electricity price...