RSA v číselných telesách a na mriežkach
RSA in number fields and on lattices
RSA v číselných tělesech a na mřížkách
bachelor thesis (DEFENDED)
View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/182619Identifiers
Study Information System: 257020
Collections
- Kvalifikační práce [11242]
Author
Advisor
Referee
Šůstek Vyhnalová, Sára
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
Mathematics for Information Technologies
Department
Department of Algebra
Date of defense
21. 6. 2023
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
Slovak
Grade
Good
Keywords (Czech)
RSA|číselná telesá|mriežkyKeywords (English)
RSA|number fields|latticesTáto práca sa zaoberá algoritmom RSA popísaneho na číselných telesách a mriežkach. Konkrétne ide o rozšírenie článku High Dimensional RSA od autorov Zheng a Liu. V práci pomocou viet a príkladov dôkladne popisujeme teóriu potrebnú pre vytvorenie algoritmu, pričom využívame najmä poznatky z algebraickej teórie čísel a teórie mriežok. V druhej kapitole popisujeme RSA iba na číselných telesách, vysvetľujeme jeho problémy a po- trebu prechodu do mreižok. V tretej kapitole dôkladne popisujeme vlastnosti ideálových matíc, definujeme vektorové násobenie v Rn a na konci dokazujeme okruhový izomorfiz- mus K ≃ Qn ≃ M∗ Q. Vo štvrtej kapitole sa venujeme dôkazu okruhovému izomorfizmu Z[x]/(mθ(x)) ≃ OK ≃ Zn ≃ M∗ Z, definujeme ideálové mriežky a budujeme potrebnú teóriu nad mriežkami pre RSA. Záverečná kapitola obsahuje kompletný algoritmus aj s názorným príkladom. 1
This thesis is focused on the RSA algorithm in number fields and on lattices. Specif- ically, we extend the work the authors Zheng and Liu in their article High Dimensional RSA. In the thesis we precisely describe all the theory required theory with theorems and examples using mostly Algebraic number theory and lattice theory. In the second chapter, we create the RSA only in number fields, we discuss its problems and the ne- cessity of lattices. In the third chapter, we precisely describe and prove properties of ideal matrices, we define the vector multiplication in Rn and at the end ve prove the ring isomorphism K ≃ Qn ≃ M∗ Q. In the fourth chapter, we prove the ring isomorphism Z[x]/(mθ(x)) ≃ OK ≃ Zn ≃ M∗ Z, we define ideal lattices and we create all the required theory over lattices for RSA. The last chapter consists of the complete RSA algorithm in number fields and on lattices and example. 1