Biogenesis, structure and physiological functions of mitochondrial ATP synthase
Biogeneze, struktura a fyziologický význam mitochondriální ATP syntázy
diploma thesis (DEFENDED)
View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/177317Identifiers
Study Information System: 231030
Collections
- Kvalifikační práce [20134]
Author
Advisor
Referee
Doležal, Pavel
Faculty / Institute
Faculty of Science
Discipline
Cell Biology
Department
Department of Cell Biology
Date of defense
19. 9. 2022
Publisher
Univerzita Karlova, Přírodovědecká fakultaLanguage
English
Grade
Excellent
Keywords (Czech)
mitochondrie, ATP syntáza, oxidačně fosforylační aparát, mitochondriální pór přechodné propustnosti, CRISPR, mPTPKeywords (English)
mitochondria, ATP synthase, oxidative phosphorylation apparatus, mitochondrial permeability transition pore, CRISPR, mPTPSavčí mitochondriální ATP syntáza je enzym skládající se z 18 proteinových podjednotek, jenž se nachází ve vnitřní membráně mitochondrie. Její hlavní funkcí je využívat protonový gradient, který je utvářen komplexy respiračního řetězce (RCC), za účelem tvorby ATP. Vedle tvorby ATP je známo, že se dimery ATP syntázy podílejí na správné mitochondriální morfologii skrze tvorbu apexů krist. Dále bylo navrženo, že je rovněž zapojena ve fenoménu mitochondriální přechodné propustnosti, který má důležitou funkci v regulaci programované buněčné smrti. V posledních letech bylo na poli studia biogeneze savčí ATP syntázy dosaženo řady úspěchů. Proces jejího sestavování je nyní objasněn, nicméně poznatky o asemblačních faktorech periferního stonku a podjednotky c jsou stále neúplné. Právě za účelem zodpovězení těchto otázek na polích biogeneze a sekundarních rolí savčí ATP syntázy jsme vytvořili KO model katalytické β podjednotky F1 části savčí ATP syntázy (βKO). Tento model byl připraven na pozadí buněčné linie HEK293. Jeho následná charakterizace ukázala, že narušení F1 struktury enzymu vyústilo v nemožnost složení funkčního monomeru a došlo k rozpadu jednotlivých podjednotek. Jediným stabilním asemblačním intermediátem, jenž byl odhalen, byl oktamer podjednotky c, který oproti kontrole vykazoval zvýšenou stabilitu. V...
Mammalian mitochondrial ATP synthase is an enzyme composed of 18 protein subunits, which is localised in the inner mitochondrial membrane. Its main function is to utilise proton gradient, produced by respiratory chain complexes (RCC), for the synthesis of ATP. Aside from the creation of ATP it is known that its dimers contribute to the correct mitochondrial morphology through the formation of cristae apexes. Furthermore, ATP synthase was proposed to have a role in the mitochondrial permeability transition phenomenon, which is important for regulation of programmed cell death. Over the recent years, our understanding of mammalian ATP synthase biogenesis has been tremendously improved. Its assembly process is now clarified, however the knowledge about assembly intermediates of its peripheral stalk and of subunit c are still not sufficient. We focused precisely on those unsolved questions in the fields of ATP synthase biogenesis and its secondary functions, by the production of a KO model of catalytic β subunit of mammalian ATP synthase F1 domain (βKO). This model was successfully prepared on the background of HEK293 cell line. Its characterisation revealed that disruption of the F1 structure resulted in the inability to assemble functional monomer and resulted in a decay of individual subunits. The only...